Abstract

The temperature response of fiber Bragg gratings (FBGs) embedded in carbon fiber reinforce polymers (CFRPs) is investigated in this paper. To provide strain-free temperature measurements, two pieces of anti-sticking materials are placed at both sides of the embedded optical fiber and between carbon fiber prepregs; thus, providing slippery surfaces that minimize the strain transfer to the FBG sensor. In particular, the impact of different anti-stick materials on the temperature and residual bending strain response of the embedded FBGs is experimentally investigated. Results demonstrate that although some materials can allow for minimum residual strain being transferred to the FBG, their thermal conductivity does not always fulfill the requirements for reliable temperature sensing. It is found out that, among the tested materials, aluminum and copper foils can provide both reliable temperature response (with negligible delay and bias) and minimum residual strain. Using such anti-stick materials, the error induced by the residual strain on FBG temperature measurements is also experimentally evaluated by applying temperature and bending loads (strain) simultaneously to the CFRP packaging. While the study is here performed for FBG-based point sensors, most of the results and conclusions are also expected to be valid for applications of embedded distributed optical fiber sensors being affected by strain-temperature cross-sensitivity issues.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Cai, L. Qiu, S. Yuan, L. Shi, P. Liu, and D. Liang, “Structural health monitoring for composite materials,” in Composites and Their Applications, N. Hu, Ed., Rijeka, Croatia: IntechOpen, 2012, doi: .
  2. G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “Strain measurements of composite laminates with embedded fibre Bragg gratings: Criticism and opportunities for research,” Sensors, vol. 11, no. 1, pp. 384–408, 2011, doi: .
    [Crossref]
  3. R. Di Sante, “Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications,” Sensors, vol. 15, no. 8, pp. 18666–18713, 2015, doi: .
    [Crossref]
  4. Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol., vol. 8, no. 4, pp. 355–375, 1997, doi: .
    [Crossref]
  5. A. D. Kerseyet al., “Fiber grating sensors,” J. Lightw. Technol., vol. 15, no. 8, pp. 1442–1463, 1997, doi: .
    [Crossref]
  6. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing. Boston, U.K.: Artech House, 1999.
  7. K.-T. Tau, “Structural health monitoring for smart composites using embedded FBG sensor technology,” Mater. Sci. Technol., vol. 30, no. 13, pp. 1642–1654, 2014, doi: .
    [Crossref]
  8. K. S. C. Kuang and W. J. Cantwell, “Use of conventional optical fibers and fiber Bragg gratings for damage detection in advanced composite structures: A review,” Appl. Mech. Rev., vol. 56, no. 5, pp. 493–513, 2003, doi: .
    [Crossref]
  9. J.-I. Koh, H.-J. Bang, C.-G. Kim, and C.-S. Hong, “Simultaneous measurement of strain and damage signal of composite structures using fiber Bragg grating sensor,” Smart Mater. Struct., vol. 14, no. 4, pp. 658–663, 2005, doi: .
    [Crossref]
  10. J. Palaniappan, H. Wang, S. L. Ogin, A. Thorne, G. T. Reed, and S. C. Tjin, “Use of conventional and chirped optical fibre Bragg gratings to detect matrix cracking damage in composite materials,” J. Phys., Conf. Ser., vol. 15, no. 15, pp. 55–60, 2005, doi: .
    [Crossref]
  11. J. Frieden, J. Cugnoni, J. Botsis, and T. Gmür, “Low energy impact damage monitoring of composites using dynamic strain signals from FBG sensors—Part II: Damage identification,” Composite Struct., vol. 94, no. 2, pp. 593–600, 2012, doi: .
    [Crossref]
  12. S. Takeda, Y. Okabe, and N. Takeda, “Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors,” Composites A, Appl. Sci. Manuf., vol. 33, no. 7, pp. 971–980, 2002, doi: .
    [Crossref]
  13. S. Takeda, T. Yamamoto, Y. Okabe, and N. Takeda, “Debonding monitoring of composite repair patches using embedded small-diameter FBG sensors,” Smart Mater. Struct., vol. 16, no. 3, pp. 763–770, 2007, doi: .
    [Crossref]
  14. Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors,” Smart Mater. Struct., vol. 9, no. 6, pp. 832–838, 2000, doi: .
    [Crossref]
  15. K. Krebber, W. Habel, T. Gutmann, and C. Schram, “Fiber Bragg grating sensors for monitoring of wind turbine blades,” Proc. SPIE, vol. 5855, pp. 1036–1039, 23, 2005, doi: .
    [Crossref]
  16. I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors, vol. 15, no. 7, pp. 15494–15519, 2015, doi: .
    [Crossref]
  17. P. Zhu, X. Sun, X. Xie, and M. A. Soto, “Smart design for temperature-strain measurement using distributed fiber-optic embedded in laminated composites,” in Proc. 9th Int. Symp. NDT Aerosp., Xiamen, China, Nov. 8–10, 2017, Paper NDT2017-068.
  18. P. Zhu, X. Xie, X. Sun, and M. A. Soto, “Distributed modular temperature-strain sensor based on optical fiber embedded in laminated composites,” Composites B, Eng., vol. 168, pp. 267–273, 2019, doi: .
    [Crossref]
  19. Y. Wang, P. Zhu, J. Wu, X. Sun, and M. A. Soto, “Thermal and residual strain response of an FBG-based temperature sensor embedded in carbon fiber reinforced composites,” in Proc. 26th Int. Conf. Opt. Fiber Sensors, 2018, Paper WF86, doi: .
  20. S. Oore and M. Oore, “Uniform strength for large deflections of cantilever beams under end point load,” Struct. Multidisciplinary Optim., vol. 38, no. 5, pp. 499–510, 2009, doi: .
    [Crossref]

2019 (1)

P. Zhu, X. Xie, X. Sun, and M. A. Soto, “Distributed modular temperature-strain sensor based on optical fiber embedded in laminated composites,” Composites B, Eng., vol. 168, pp. 267–273, 2019, doi: .
[Crossref]

2015 (2)

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors, vol. 15, no. 7, pp. 15494–15519, 2015, doi: .
[Crossref]

R. Di Sante, “Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications,” Sensors, vol. 15, no. 8, pp. 18666–18713, 2015, doi: .
[Crossref]

2014 (1)

K.-T. Tau, “Structural health monitoring for smart composites using embedded FBG sensor technology,” Mater. Sci. Technol., vol. 30, no. 13, pp. 1642–1654, 2014, doi: .
[Crossref]

2012 (1)

J. Frieden, J. Cugnoni, J. Botsis, and T. Gmür, “Low energy impact damage monitoring of composites using dynamic strain signals from FBG sensors—Part II: Damage identification,” Composite Struct., vol. 94, no. 2, pp. 593–600, 2012, doi: .
[Crossref]

2011 (1)

G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “Strain measurements of composite laminates with embedded fibre Bragg gratings: Criticism and opportunities for research,” Sensors, vol. 11, no. 1, pp. 384–408, 2011, doi: .
[Crossref]

2009 (1)

S. Oore and M. Oore, “Uniform strength for large deflections of cantilever beams under end point load,” Struct. Multidisciplinary Optim., vol. 38, no. 5, pp. 499–510, 2009, doi: .
[Crossref]

2007 (1)

S. Takeda, T. Yamamoto, Y. Okabe, and N. Takeda, “Debonding monitoring of composite repair patches using embedded small-diameter FBG sensors,” Smart Mater. Struct., vol. 16, no. 3, pp. 763–770, 2007, doi: .
[Crossref]

2005 (3)

K. Krebber, W. Habel, T. Gutmann, and C. Schram, “Fiber Bragg grating sensors for monitoring of wind turbine blades,” Proc. SPIE, vol. 5855, pp. 1036–1039, 23, 2005, doi: .
[Crossref]

J.-I. Koh, H.-J. Bang, C.-G. Kim, and C.-S. Hong, “Simultaneous measurement of strain and damage signal of composite structures using fiber Bragg grating sensor,” Smart Mater. Struct., vol. 14, no. 4, pp. 658–663, 2005, doi: .
[Crossref]

J. Palaniappan, H. Wang, S. L. Ogin, A. Thorne, G. T. Reed, and S. C. Tjin, “Use of conventional and chirped optical fibre Bragg gratings to detect matrix cracking damage in composite materials,” J. Phys., Conf. Ser., vol. 15, no. 15, pp. 55–60, 2005, doi: .
[Crossref]

2003 (1)

K. S. C. Kuang and W. J. Cantwell, “Use of conventional optical fibers and fiber Bragg gratings for damage detection in advanced composite structures: A review,” Appl. Mech. Rev., vol. 56, no. 5, pp. 493–513, 2003, doi: .
[Crossref]

2002 (1)

S. Takeda, Y. Okabe, and N. Takeda, “Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors,” Composites A, Appl. Sci. Manuf., vol. 33, no. 7, pp. 971–980, 2002, doi: .
[Crossref]

2000 (1)

Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors,” Smart Mater. Struct., vol. 9, no. 6, pp. 832–838, 2000, doi: .
[Crossref]

1997 (2)

Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol., vol. 8, no. 4, pp. 355–375, 1997, doi: .
[Crossref]

A. D. Kerseyet al., “Fiber grating sensors,” J. Lightw. Technol., vol. 15, no. 8, pp. 1442–1463, 1997, doi: .
[Crossref]

Aldabaldetreku, G.

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors, vol. 15, no. 7, pp. 15494–15519, 2015, doi: .
[Crossref]

Bang, H.-J.

J.-I. Koh, H.-J. Bang, C.-G. Kim, and C.-S. Hong, “Simultaneous measurement of strain and damage signal of composite structures using fiber Bragg grating sensor,” Smart Mater. Struct., vol. 14, no. 4, pp. 658–663, 2005, doi: .
[Crossref]

Botsis, J.

J. Frieden, J. Cugnoni, J. Botsis, and T. Gmür, “Low energy impact damage monitoring of composites using dynamic strain signals from FBG sensors—Part II: Damage identification,” Composite Struct., vol. 94, no. 2, pp. 593–600, 2012, doi: .
[Crossref]

Cai, J.

J. Cai, L. Qiu, S. Yuan, L. Shi, P. Liu, and D. Liang, “Structural health monitoring for composite materials,” in Composites and Their Applications, N. Hu, Ed., Rijeka, Croatia: IntechOpen, 2012, doi: .

Cantwell, W. J.

K. S. C. Kuang and W. J. Cantwell, “Use of conventional optical fibers and fiber Bragg gratings for damage detection in advanced composite structures: A review,” Appl. Mech. Rev., vol. 56, no. 5, pp. 493–513, 2003, doi: .
[Crossref]

Cugnoni, J.

J. Frieden, J. Cugnoni, J. Botsis, and T. Gmür, “Low energy impact damage monitoring of composites using dynamic strain signals from FBG sensors—Part II: Damage identification,” Composite Struct., vol. 94, no. 2, pp. 593–600, 2012, doi: .
[Crossref]

Degrieck, J.

G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “Strain measurements of composite laminates with embedded fibre Bragg gratings: Criticism and opportunities for research,” Sensors, vol. 11, no. 1, pp. 384–408, 2011, doi: .
[Crossref]

Di Sante, R.

R. Di Sante, “Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications,” Sensors, vol. 15, no. 8, pp. 18666–18713, 2015, doi: .
[Crossref]

Durana, G.

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors, vol. 15, no. 7, pp. 15494–15519, 2015, doi: .
[Crossref]

Frieden, J.

J. Frieden, J. Cugnoni, J. Botsis, and T. Gmür, “Low energy impact damage monitoring of composites using dynamic strain signals from FBG sensors—Part II: Damage identification,” Composite Struct., vol. 94, no. 2, pp. 593–600, 2012, doi: .
[Crossref]

García, I.

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors, vol. 15, no. 7, pp. 15494–15519, 2015, doi: .
[Crossref]

Gmür, T.

J. Frieden, J. Cugnoni, J. Botsis, and T. Gmür, “Low energy impact damage monitoring of composites using dynamic strain signals from FBG sensors—Part II: Damage identification,” Composite Struct., vol. 94, no. 2, pp. 593–600, 2012, doi: .
[Crossref]

Gutmann, T.

K. Krebber, W. Habel, T. Gutmann, and C. Schram, “Fiber Bragg grating sensors for monitoring of wind turbine blades,” Proc. SPIE, vol. 5855, pp. 1036–1039, 23, 2005, doi: .
[Crossref]

Habel, W.

K. Krebber, W. Habel, T. Gutmann, and C. Schram, “Fiber Bragg grating sensors for monitoring of wind turbine blades,” Proc. SPIE, vol. 5855, pp. 1036–1039, 23, 2005, doi: .
[Crossref]

Hong, C.-S.

J.-I. Koh, H.-J. Bang, C.-G. Kim, and C.-S. Hong, “Simultaneous measurement of strain and damage signal of composite structures using fiber Bragg grating sensor,” Smart Mater. Struct., vol. 14, no. 4, pp. 658–663, 2005, doi: .
[Crossref]

Illarramendi, M. A.

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors, vol. 15, no. 7, pp. 15494–15519, 2015, doi: .
[Crossref]

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing. Boston, U.K.: Artech House, 1999.

Kersey, A. D.

A. D. Kerseyet al., “Fiber grating sensors,” J. Lightw. Technol., vol. 15, no. 8, pp. 1442–1463, 1997, doi: .
[Crossref]

Kim, C.-G.

J.-I. Koh, H.-J. Bang, C.-G. Kim, and C.-S. Hong, “Simultaneous measurement of strain and damage signal of composite structures using fiber Bragg grating sensor,” Smart Mater. Struct., vol. 14, no. 4, pp. 658–663, 2005, doi: .
[Crossref]

Koh, J.-I.

J.-I. Koh, H.-J. Bang, C.-G. Kim, and C.-S. Hong, “Simultaneous measurement of strain and damage signal of composite structures using fiber Bragg grating sensor,” Smart Mater. Struct., vol. 14, no. 4, pp. 658–663, 2005, doi: .
[Crossref]

Kosaka, T.

Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors,” Smart Mater. Struct., vol. 9, no. 6, pp. 832–838, 2000, doi: .
[Crossref]

Krebber, K.

K. Krebber, W. Habel, T. Gutmann, and C. Schram, “Fiber Bragg grating sensors for monitoring of wind turbine blades,” Proc. SPIE, vol. 5855, pp. 1036–1039, 23, 2005, doi: .
[Crossref]

Kuang, K. S. C.

K. S. C. Kuang and W. J. Cantwell, “Use of conventional optical fibers and fiber Bragg gratings for damage detection in advanced composite structures: A review,” Appl. Mech. Rev., vol. 56, no. 5, pp. 493–513, 2003, doi: .
[Crossref]

Lammens, N.

G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “Strain measurements of composite laminates with embedded fibre Bragg gratings: Criticism and opportunities for research,” Sensors, vol. 11, no. 1, pp. 384–408, 2011, doi: .
[Crossref]

Liang, D.

J. Cai, L. Qiu, S. Yuan, L. Shi, P. Liu, and D. Liang, “Structural health monitoring for composite materials,” in Composites and Their Applications, N. Hu, Ed., Rijeka, Croatia: IntechOpen, 2012, doi: .

Liu, P.

J. Cai, L. Qiu, S. Yuan, L. Shi, P. Liu, and D. Liang, “Structural health monitoring for composite materials,” in Composites and Their Applications, N. Hu, Ed., Rijeka, Croatia: IntechOpen, 2012, doi: .

Luyckx, G.

G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “Strain measurements of composite laminates with embedded fibre Bragg gratings: Criticism and opportunities for research,” Sensors, vol. 11, no. 1, pp. 384–408, 2011, doi: .
[Crossref]

Ogin, S. L.

J. Palaniappan, H. Wang, S. L. Ogin, A. Thorne, G. T. Reed, and S. C. Tjin, “Use of conventional and chirped optical fibre Bragg gratings to detect matrix cracking damage in composite materials,” J. Phys., Conf. Ser., vol. 15, no. 15, pp. 55–60, 2005, doi: .
[Crossref]

Okabe, Y.

S. Takeda, T. Yamamoto, Y. Okabe, and N. Takeda, “Debonding monitoring of composite repair patches using embedded small-diameter FBG sensors,” Smart Mater. Struct., vol. 16, no. 3, pp. 763–770, 2007, doi: .
[Crossref]

S. Takeda, Y. Okabe, and N. Takeda, “Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors,” Composites A, Appl. Sci. Manuf., vol. 33, no. 7, pp. 971–980, 2002, doi: .
[Crossref]

Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors,” Smart Mater. Struct., vol. 9, no. 6, pp. 832–838, 2000, doi: .
[Crossref]

Oore, M.

S. Oore and M. Oore, “Uniform strength for large deflections of cantilever beams under end point load,” Struct. Multidisciplinary Optim., vol. 38, no. 5, pp. 499–510, 2009, doi: .
[Crossref]

Oore, S.

S. Oore and M. Oore, “Uniform strength for large deflections of cantilever beams under end point load,” Struct. Multidisciplinary Optim., vol. 38, no. 5, pp. 499–510, 2009, doi: .
[Crossref]

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing. Boston, U.K.: Artech House, 1999.

Palaniappan, J.

J. Palaniappan, H. Wang, S. L. Ogin, A. Thorne, G. T. Reed, and S. C. Tjin, “Use of conventional and chirped optical fibre Bragg gratings to detect matrix cracking damage in composite materials,” J. Phys., Conf. Ser., vol. 15, no. 15, pp. 55–60, 2005, doi: .
[Crossref]

Qiu, L.

J. Cai, L. Qiu, S. Yuan, L. Shi, P. Liu, and D. Liang, “Structural health monitoring for composite materials,” in Composites and Their Applications, N. Hu, Ed., Rijeka, Croatia: IntechOpen, 2012, doi: .

Rao, Y.-J.

Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol., vol. 8, no. 4, pp. 355–375, 1997, doi: .
[Crossref]

Reed, G. T.

J. Palaniappan, H. Wang, S. L. Ogin, A. Thorne, G. T. Reed, and S. C. Tjin, “Use of conventional and chirped optical fibre Bragg gratings to detect matrix cracking damage in composite materials,” J. Phys., Conf. Ser., vol. 15, no. 15, pp. 55–60, 2005, doi: .
[Crossref]

Schram, C.

K. Krebber, W. Habel, T. Gutmann, and C. Schram, “Fiber Bragg grating sensors for monitoring of wind turbine blades,” Proc. SPIE, vol. 5855, pp. 1036–1039, 23, 2005, doi: .
[Crossref]

Shi, L.

J. Cai, L. Qiu, S. Yuan, L. Shi, P. Liu, and D. Liang, “Structural health monitoring for composite materials,” in Composites and Their Applications, N. Hu, Ed., Rijeka, Croatia: IntechOpen, 2012, doi: .

Soto, M. A.

P. Zhu, X. Xie, X. Sun, and M. A. Soto, “Distributed modular temperature-strain sensor based on optical fiber embedded in laminated composites,” Composites B, Eng., vol. 168, pp. 267–273, 2019, doi: .
[Crossref]

P. Zhu, X. Sun, X. Xie, and M. A. Soto, “Smart design for temperature-strain measurement using distributed fiber-optic embedded in laminated composites,” in Proc. 9th Int. Symp. NDT Aerosp., Xiamen, China, Nov. 8–10, 2017, Paper NDT2017-068.

Y. Wang, P. Zhu, J. Wu, X. Sun, and M. A. Soto, “Thermal and residual strain response of an FBG-based temperature sensor embedded in carbon fiber reinforced composites,” in Proc. 26th Int. Conf. Opt. Fiber Sensors, 2018, Paper WF86, doi: .

Sun, X.

P. Zhu, X. Xie, X. Sun, and M. A. Soto, “Distributed modular temperature-strain sensor based on optical fiber embedded in laminated composites,” Composites B, Eng., vol. 168, pp. 267–273, 2019, doi: .
[Crossref]

Y. Wang, P. Zhu, J. Wu, X. Sun, and M. A. Soto, “Thermal and residual strain response of an FBG-based temperature sensor embedded in carbon fiber reinforced composites,” in Proc. 26th Int. Conf. Opt. Fiber Sensors, 2018, Paper WF86, doi: .

P. Zhu, X. Sun, X. Xie, and M. A. Soto, “Smart design for temperature-strain measurement using distributed fiber-optic embedded in laminated composites,” in Proc. 9th Int. Symp. NDT Aerosp., Xiamen, China, Nov. 8–10, 2017, Paper NDT2017-068.

Takeda, N.

S. Takeda, T. Yamamoto, Y. Okabe, and N. Takeda, “Debonding monitoring of composite repair patches using embedded small-diameter FBG sensors,” Smart Mater. Struct., vol. 16, no. 3, pp. 763–770, 2007, doi: .
[Crossref]

S. Takeda, Y. Okabe, and N. Takeda, “Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors,” Composites A, Appl. Sci. Manuf., vol. 33, no. 7, pp. 971–980, 2002, doi: .
[Crossref]

Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors,” Smart Mater. Struct., vol. 9, no. 6, pp. 832–838, 2000, doi: .
[Crossref]

Takeda, S.

S. Takeda, T. Yamamoto, Y. Okabe, and N. Takeda, “Debonding monitoring of composite repair patches using embedded small-diameter FBG sensors,” Smart Mater. Struct., vol. 16, no. 3, pp. 763–770, 2007, doi: .
[Crossref]

S. Takeda, Y. Okabe, and N. Takeda, “Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors,” Composites A, Appl. Sci. Manuf., vol. 33, no. 7, pp. 971–980, 2002, doi: .
[Crossref]

Tau, K.-T.

K.-T. Tau, “Structural health monitoring for smart composites using embedded FBG sensor technology,” Mater. Sci. Technol., vol. 30, no. 13, pp. 1642–1654, 2014, doi: .
[Crossref]

Thorne, A.

J. Palaniappan, H. Wang, S. L. Ogin, A. Thorne, G. T. Reed, and S. C. Tjin, “Use of conventional and chirped optical fibre Bragg gratings to detect matrix cracking damage in composite materials,” J. Phys., Conf. Ser., vol. 15, no. 15, pp. 55–60, 2005, doi: .
[Crossref]

Tjin, S. C.

J. Palaniappan, H. Wang, S. L. Ogin, A. Thorne, G. T. Reed, and S. C. Tjin, “Use of conventional and chirped optical fibre Bragg gratings to detect matrix cracking damage in composite materials,” J. Phys., Conf. Ser., vol. 15, no. 15, pp. 55–60, 2005, doi: .
[Crossref]

Villatoro, J.

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors, vol. 15, no. 7, pp. 15494–15519, 2015, doi: .
[Crossref]

Voet, E.

G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “Strain measurements of composite laminates with embedded fibre Bragg gratings: Criticism and opportunities for research,” Sensors, vol. 11, no. 1, pp. 384–408, 2011, doi: .
[Crossref]

Wang, H.

J. Palaniappan, H. Wang, S. L. Ogin, A. Thorne, G. T. Reed, and S. C. Tjin, “Use of conventional and chirped optical fibre Bragg gratings to detect matrix cracking damage in composite materials,” J. Phys., Conf. Ser., vol. 15, no. 15, pp. 55–60, 2005, doi: .
[Crossref]

Wang, Y.

Y. Wang, P. Zhu, J. Wu, X. Sun, and M. A. Soto, “Thermal and residual strain response of an FBG-based temperature sensor embedded in carbon fiber reinforced composites,” in Proc. 26th Int. Conf. Opt. Fiber Sensors, 2018, Paper WF86, doi: .

Wu, J.

Y. Wang, P. Zhu, J. Wu, X. Sun, and M. A. Soto, “Thermal and residual strain response of an FBG-based temperature sensor embedded in carbon fiber reinforced composites,” in Proc. 26th Int. Conf. Opt. Fiber Sensors, 2018, Paper WF86, doi: .

Xie, X.

P. Zhu, X. Xie, X. Sun, and M. A. Soto, “Distributed modular temperature-strain sensor based on optical fiber embedded in laminated composites,” Composites B, Eng., vol. 168, pp. 267–273, 2019, doi: .
[Crossref]

P. Zhu, X. Sun, X. Xie, and M. A. Soto, “Smart design for temperature-strain measurement using distributed fiber-optic embedded in laminated composites,” in Proc. 9th Int. Symp. NDT Aerosp., Xiamen, China, Nov. 8–10, 2017, Paper NDT2017-068.

Yamamoto, T.

S. Takeda, T. Yamamoto, Y. Okabe, and N. Takeda, “Debonding monitoring of composite repair patches using embedded small-diameter FBG sensors,” Smart Mater. Struct., vol. 16, no. 3, pp. 763–770, 2007, doi: .
[Crossref]

Yashiro, S.

Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors,” Smart Mater. Struct., vol. 9, no. 6, pp. 832–838, 2000, doi: .
[Crossref]

Yuan, S.

J. Cai, L. Qiu, S. Yuan, L. Shi, P. Liu, and D. Liang, “Structural health monitoring for composite materials,” in Composites and Their Applications, N. Hu, Ed., Rijeka, Croatia: IntechOpen, 2012, doi: .

Zhu, P.

P. Zhu, X. Xie, X. Sun, and M. A. Soto, “Distributed modular temperature-strain sensor based on optical fiber embedded in laminated composites,” Composites B, Eng., vol. 168, pp. 267–273, 2019, doi: .
[Crossref]

Y. Wang, P. Zhu, J. Wu, X. Sun, and M. A. Soto, “Thermal and residual strain response of an FBG-based temperature sensor embedded in carbon fiber reinforced composites,” in Proc. 26th Int. Conf. Opt. Fiber Sensors, 2018, Paper WF86, doi: .

P. Zhu, X. Sun, X. Xie, and M. A. Soto, “Smart design for temperature-strain measurement using distributed fiber-optic embedded in laminated composites,” in Proc. 9th Int. Symp. NDT Aerosp., Xiamen, China, Nov. 8–10, 2017, Paper NDT2017-068.

Zubia, J.

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors, vol. 15, no. 7, pp. 15494–15519, 2015, doi: .
[Crossref]

Appl. Mech. Rev. (1)

K. S. C. Kuang and W. J. Cantwell, “Use of conventional optical fibers and fiber Bragg gratings for damage detection in advanced composite structures: A review,” Appl. Mech. Rev., vol. 56, no. 5, pp. 493–513, 2003, doi: .
[Crossref]

Composite Struct. (1)

J. Frieden, J. Cugnoni, J. Botsis, and T. Gmür, “Low energy impact damage monitoring of composites using dynamic strain signals from FBG sensors—Part II: Damage identification,” Composite Struct., vol. 94, no. 2, pp. 593–600, 2012, doi: .
[Crossref]

Composites A, Appl. Sci. Manuf. (1)

S. Takeda, Y. Okabe, and N. Takeda, “Delamination detection in CFRP laminates with embedded small-diameter fiber Bragg grating sensors,” Composites A, Appl. Sci. Manuf., vol. 33, no. 7, pp. 971–980, 2002, doi: .
[Crossref]

Composites B, Eng. (1)

P. Zhu, X. Xie, X. Sun, and M. A. Soto, “Distributed modular temperature-strain sensor based on optical fiber embedded in laminated composites,” Composites B, Eng., vol. 168, pp. 267–273, 2019, doi: .
[Crossref]

J. Lightw. Technol. (1)

A. D. Kerseyet al., “Fiber grating sensors,” J. Lightw. Technol., vol. 15, no. 8, pp. 1442–1463, 1997, doi: .
[Crossref]

J. Phys., Conf. Ser. (1)

J. Palaniappan, H. Wang, S. L. Ogin, A. Thorne, G. T. Reed, and S. C. Tjin, “Use of conventional and chirped optical fibre Bragg gratings to detect matrix cracking damage in composite materials,” J. Phys., Conf. Ser., vol. 15, no. 15, pp. 55–60, 2005, doi: .
[Crossref]

Mater. Sci. Technol. (1)

K.-T. Tau, “Structural health monitoring for smart composites using embedded FBG sensor technology,” Mater. Sci. Technol., vol. 30, no. 13, pp. 1642–1654, 2014, doi: .
[Crossref]

Meas. Sci. Technol. (1)

Y.-J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol., vol. 8, no. 4, pp. 355–375, 1997, doi: .
[Crossref]

Proc. SPIE (1)

K. Krebber, W. Habel, T. Gutmann, and C. Schram, “Fiber Bragg grating sensors for monitoring of wind turbine blades,” Proc. SPIE, vol. 5855, pp. 1036–1039, 23, 2005, doi: .
[Crossref]

Sensors (3)

I. García, J. Zubia, G. Durana, G. Aldabaldetreku, M. A. Illarramendi, and J. Villatoro, “Optical fiber sensors for aircraft structural health monitoring,” Sensors, vol. 15, no. 7, pp. 15494–15519, 2015, doi: .
[Crossref]

G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “Strain measurements of composite laminates with embedded fibre Bragg gratings: Criticism and opportunities for research,” Sensors, vol. 11, no. 1, pp. 384–408, 2011, doi: .
[Crossref]

R. Di Sante, “Fibre optic sensors for structural health monitoring of aircraft composite structures: Recent advances and applications,” Sensors, vol. 15, no. 8, pp. 18666–18713, 2015, doi: .
[Crossref]

Smart Mater. Struct. (3)

J.-I. Koh, H.-J. Bang, C.-G. Kim, and C.-S. Hong, “Simultaneous measurement of strain and damage signal of composite structures using fiber Bragg grating sensor,” Smart Mater. Struct., vol. 14, no. 4, pp. 658–663, 2005, doi: .
[Crossref]

S. Takeda, T. Yamamoto, Y. Okabe, and N. Takeda, “Debonding monitoring of composite repair patches using embedded small-diameter FBG sensors,” Smart Mater. Struct., vol. 16, no. 3, pp. 763–770, 2007, doi: .
[Crossref]

Y. Okabe, S. Yashiro, T. Kosaka, and N. Takeda, “Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors,” Smart Mater. Struct., vol. 9, no. 6, pp. 832–838, 2000, doi: .
[Crossref]

Struct. Multidisciplinary Optim. (1)

S. Oore and M. Oore, “Uniform strength for large deflections of cantilever beams under end point load,” Struct. Multidisciplinary Optim., vol. 38, no. 5, pp. 499–510, 2009, doi: .
[Crossref]

Other (4)

Y. Wang, P. Zhu, J. Wu, X. Sun, and M. A. Soto, “Thermal and residual strain response of an FBG-based temperature sensor embedded in carbon fiber reinforced composites,” in Proc. 26th Int. Conf. Opt. Fiber Sensors, 2018, Paper WF86, doi: .

P. Zhu, X. Sun, X. Xie, and M. A. Soto, “Smart design for temperature-strain measurement using distributed fiber-optic embedded in laminated composites,” in Proc. 9th Int. Symp. NDT Aerosp., Xiamen, China, Nov. 8–10, 2017, Paper NDT2017-068.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing. Boston, U.K.: Artech House, 1999.

J. Cai, L. Qiu, S. Yuan, L. Shi, P. Liu, and D. Liang, “Structural health monitoring for composite materials,” in Composites and Their Applications, N. Hu, Ed., Rijeka, Croatia: IntechOpen, 2012, doi: .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.