Abstract

Although distributed fiber-optic sensing of axial strain and temperature is a well-established technique, there are almost no demonstrations of distributed hydrostatic pressure sensing. The main obstacle for such measurements is the low sensitivity to pressure of standard optical fibers. Structured fibers, such as photonic crystal fibers, can be made pressure sensitive by means of an optimized arrangement of their internal microstructure. In this paper, we demonstrate—for the first time to our knowledge—distributed birefringence and hydrostatic pressure measurements based on phase-sensitive optical time-domain reflectometry (OTDR) in highly birefringent photonic crystal fibers. We study the response to hydrostatic pressure of two dedicated pressure-sensitive photonic crystal fibers in the range from ∼0.8 to ∼67 bar with a 5-cm spatial resolution using a phase-OTDR approach. We find differential pressure sensitivities between the slow and fast polarization axes of the studied fibers of –219 MHz/bar and 95.4 MHz/bar. These values are ∼3.8 to ∼8.8 times larger than those demonstrated previously in distributed pressure measurements with other photonic crystal fibers.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1302, 1995, doi: .
    [Crossref]
  2. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009, doi: .
    [Crossref]
  3. T. Chenet al., “Distributed high-temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett., vol. 37, no. 6, pp. 1064–1066, 2012, doi: .
    [Crossref]
  4. Y. H. Kim, H. Kwon, J. Kim, and K. Y. Song, “Distributed measurement of hydrostatic pressure based on Brillouin dynamic grating in polarization maintaining fibers,” Opt. Express, vol. 24, no. 19, pp. 21399–21406, 2016, doi: .
    [Crossref]
  5. L. Tenget al., “Temperature-compensated distributed hydrostatic pressure +sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings,” Opt. Lett., vol. 41, no. 18, pp. 4413–4416, 2016, doi: .
    [Crossref]
  6. S. Le Floch, and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars),” Opt. Commun., vol. 219, no. 1/6, pp. 395–410, 2003, doi: .
    [Crossref]
  7. H. M. Xie, P. Dabkiewicz, R. Ulrich, and K. Okamoto, “Side-hole fiber for fiber-optic pressure sensing,” Opt. Lett., vol. 11, no. 5, pp. 333–335, 1986, doi: .
    [Crossref]
  8. M. Szpulak, T. Martynkien, and W. Urbanczyk, “Effects of hydrostatic pressure on phase and group modal birefringence in microstructured holey fibers,” Appl. Opt., vol. 43, no. 24, pp. 4739–4744, 2004, doi: .
    [Crossref]
  9. T. Nasilowskiet al., “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B, vol. 81, no. 2/3, pp. 325–331, 2005, doi: .
    [Crossref]
  10. X. Dong, H. Y. Tam and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett., vol. 90, no. 15, 2007, Art. no. , doi: .
    [Crossref]
  11. M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter,” Appl. Opt., vol. 37, no. 10, pp. 1735–1740, 1998, doi: .
    [Crossref]
  12. K. Y. Song, W. Zou, Z. He and K. Hotate, “Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber,” Opt. Lett., vol. 34, no. 9, pp. 1381–1383, 2009, doi: .
    [Crossref]
  13. M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Opt. Express, vol. 23, no. 19, pp. 24923–24936, 2015, doi: .
    [Crossref]
  14. L. Zhang, Z. Yang, F. Gyger, M. A. Soto and L. Thévenaz, “Rayleigh-based distributed optical fiber sensing using least mean square similarity,” presented at the 26th Int. Conf. Optical Fiber Sensors, Lausanne, Switzerland, Sep. 24–28, 2018.
  15. J. R. Clowes, S. Syngellakis, and M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett., vol. 10, no. 6, pp. 857–859, 1998, doi: .
    [Crossref]
  16. Z. Zhu and T. G. Brown, “Stress-induced birefringence in microstructured optical fibers,” Opt. Lett, vol. 28, no. 23, pp. 2306–2308, 2003, doi: .
    [Crossref]
  17. T. Martynkienet al., “Highly birefringent microstructured fibers with enhanced sensitivity to hydrostatic pressure,” Opt. Express, vol. 18, no. 14, pp. 15113–15121, 2010, doi: .
    [Crossref]
  18. S. Sulejmaniet al., “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers," IEEE Photon. Technol. Lett., vol. 24, no. 6, pp. 527–529, 2012, doi: .
    [Crossref]
  19. H. Zhang, Z. Yuan, Z. Liu, W. Gao and Y. Dong, “Simultaneous measurement of strain and temperature using a polarization-maintaining photonic crystal fiber with stimulated Brillouin scattering,” Appl. Phys. Express, vol. 10, 2016, Art. no. , doi: .
    [Crossref]

2016 (3)

2015 (1)

2012 (2)

T. Chenet al., “Distributed high-temperature pressure sensing using air-hole microstructural fibers,” Opt. Lett., vol. 37, no. 6, pp. 1064–1066, 2012, doi: .
[Crossref]

S. Sulejmaniet al., “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers," IEEE Photon. Technol. Lett., vol. 24, no. 6, pp. 527–529, 2012, doi: .
[Crossref]

2010 (1)

2009 (2)

K. Y. Song, W. Zou, Z. He and K. Hotate, “Optical time-domain measurement of Brillouin dynamic grating spectrum in a polarization-maintaining fiber,” Opt. Lett., vol. 34, no. 9, pp. 1381–1383, 2009, doi: .
[Crossref]

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009, doi: .
[Crossref]

2007 (1)

X. Dong, H. Y. Tam and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett., vol. 90, no. 15, 2007, Art. no. , doi: .
[Crossref]

2005 (1)

T. Nasilowskiet al., “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B, vol. 81, no. 2/3, pp. 325–331, 2005, doi: .
[Crossref]

2004 (1)

2003 (2)

S. Le Floch, and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars),” Opt. Commun., vol. 219, no. 1/6, pp. 395–410, 2003, doi: .
[Crossref]

Z. Zhu and T. G. Brown, “Stress-induced birefringence in microstructured optical fibers,” Opt. Lett, vol. 28, no. 23, pp. 2306–2308, 2003, doi: .
[Crossref]

1998 (2)

J. R. Clowes, S. Syngellakis, and M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett., vol. 10, no. 6, pp. 857–859, 1998, doi: .
[Crossref]

M. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter,” Appl. Opt., vol. 37, no. 10, pp. 1735–1740, 1998, doi: .
[Crossref]

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1302, 1995, doi: .
[Crossref]

1986 (1)

Brown, T. G.

Z. Zhu and T. G. Brown, “Stress-induced birefringence in microstructured optical fibers,” Opt. Lett, vol. 28, no. 23, pp. 2306–2308, 2003, doi: .
[Crossref]

Cambon, P.

S. Le Floch, and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars),” Opt. Commun., vol. 219, no. 1/6, pp. 395–410, 2003, doi: .
[Crossref]

Chen, T.

Clowes, J. R.

J. R. Clowes, S. Syngellakis, and M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett., vol. 10, no. 6, pp. 857–859, 1998, doi: .
[Crossref]

Dabkiewicz, P.

Dong, X.

X. Dong, H. Y. Tam and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett., vol. 90, no. 15, 2007, Art. no. , doi: .
[Crossref]

Dong, Y.

H. Zhang, Z. Yuan, Z. Liu, W. Gao and Y. Dong, “Simultaneous measurement of strain and temperature using a polarization-maintaining photonic crystal fiber with stimulated Brillouin scattering,” Appl. Phys. Express, vol. 10, 2016, Art. no. , doi: .
[Crossref]

Froggatt, M.

Gao, W.

H. Zhang, Z. Yuan, Z. Liu, W. Gao and Y. Dong, “Simultaneous measurement of strain and temperature using a polarization-maintaining photonic crystal fiber with stimulated Brillouin scattering,” Appl. Phys. Express, vol. 10, 2016, Art. no. , doi: .
[Crossref]

Gonzalez-Herraez, M.

Gyger, F.

L. Zhang, Z. Yang, F. Gyger, M. A. Soto and L. Thévenaz, “Rayleigh-based distributed optical fiber sensing using least mean square similarity,” presented at the 26th Int. Conf. Optical Fiber Sensors, Lausanne, Switzerland, Sep. 24–28, 2018.

He, Z.

Hogari, K.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009, doi: .
[Crossref]

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1302, 1995, doi: .
[Crossref]

Hotate, K.

Imahama, M.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009, doi: .
[Crossref]

Kim, J.

Kim, Y. H.

Koyamada, Y.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009, doi: .
[Crossref]

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1302, 1995, doi: .
[Crossref]

Kubota, K.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009, doi: .
[Crossref]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1302, 1995, doi: .
[Crossref]

Kwon, H.

Le Floch, S.

S. Le Floch, and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars),” Opt. Commun., vol. 219, no. 1/6, pp. 395–410, 2003, doi: .
[Crossref]

Liu, Z.

H. Zhang, Z. Yuan, Z. Liu, W. Gao and Y. Dong, “Simultaneous measurement of strain and temperature using a polarization-maintaining photonic crystal fiber with stimulated Brillouin scattering,” Appl. Phys. Express, vol. 10, 2016, Art. no. , doi: .
[Crossref]

Lu, X.

Martins, H. F.

Martynkien, T.

Moore, J.

Nasilowski, T.

T. Nasilowskiet al., “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B, vol. 81, no. 2/3, pp. 325–331, 2005, doi: .
[Crossref]

Okamoto, K.

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1302, 1995, doi: .
[Crossref]

Shum, P.

X. Dong, H. Y. Tam and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett., vol. 90, no. 15, 2007, Art. no. , doi: .
[Crossref]

Song, K. Y.

Soto, M. A.

M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Opt. Express, vol. 23, no. 19, pp. 24923–24936, 2015, doi: .
[Crossref]

L. Zhang, Z. Yang, F. Gyger, M. A. Soto and L. Thévenaz, “Rayleigh-based distributed optical fiber sensing using least mean square similarity,” presented at the 26th Int. Conf. Optical Fiber Sensors, Lausanne, Switzerland, Sep. 24–28, 2018.

Sulejmani, S.

S. Sulejmaniet al., “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers," IEEE Photon. Technol. Lett., vol. 24, no. 6, pp. 527–529, 2012, doi: .
[Crossref]

Syngellakis, S.

J. R. Clowes, S. Syngellakis, and M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett., vol. 10, no. 6, pp. 857–859, 1998, doi: .
[Crossref]

Szpulak, M.

Tam, H. Y.

X. Dong, H. Y. Tam and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett., vol. 90, no. 15, 2007, Art. no. , doi: .
[Crossref]

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1302, 1995, doi: .
[Crossref]

Teng, L.

Thévenaz, L.

M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Opt. Express, vol. 23, no. 19, pp. 24923–24936, 2015, doi: .
[Crossref]

L. Zhang, Z. Yang, F. Gyger, M. A. Soto and L. Thévenaz, “Rayleigh-based distributed optical fiber sensing using least mean square similarity,” presented at the 26th Int. Conf. Optical Fiber Sensors, Lausanne, Switzerland, Sep. 24–28, 2018.

Ulrich, R.

Urbanczyk, W.

Xie, H. M.

Yang, Z.

L. Zhang, Z. Yang, F. Gyger, M. A. Soto and L. Thévenaz, “Rayleigh-based distributed optical fiber sensing using least mean square similarity,” presented at the 26th Int. Conf. Optical Fiber Sensors, Lausanne, Switzerland, Sep. 24–28, 2018.

Yuan, Z.

H. Zhang, Z. Yuan, Z. Liu, W. Gao and Y. Dong, “Simultaneous measurement of strain and temperature using a polarization-maintaining photonic crystal fiber with stimulated Brillouin scattering,” Appl. Phys. Express, vol. 10, 2016, Art. no. , doi: .
[Crossref]

Zervas, M. N.

J. R. Clowes, S. Syngellakis, and M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett., vol. 10, no. 6, pp. 857–859, 1998, doi: .
[Crossref]

Zhang, H.

H. Zhang, Z. Yuan, Z. Liu, W. Gao and Y. Dong, “Simultaneous measurement of strain and temperature using a polarization-maintaining photonic crystal fiber with stimulated Brillouin scattering,” Appl. Phys. Express, vol. 10, 2016, Art. no. , doi: .
[Crossref]

Zhang, L.

L. Zhang, Z. Yang, F. Gyger, M. A. Soto and L. Thévenaz, “Rayleigh-based distributed optical fiber sensing using least mean square similarity,” presented at the 26th Int. Conf. Optical Fiber Sensors, Lausanne, Switzerland, Sep. 24–28, 2018.

Zhu, Z.

Z. Zhu and T. G. Brown, “Stress-induced birefringence in microstructured optical fibers,” Opt. Lett, vol. 28, no. 23, pp. 2306–2308, 2003, doi: .
[Crossref]

Zou, W.

Appl. Opt. (2)

Appl. Phys. B (1)

T. Nasilowskiet al., “Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry,” Appl. Phys. B, vol. 81, no. 2/3, pp. 325–331, 2005, doi: .
[Crossref]

Appl. Phys. Express (1)

H. Zhang, Z. Yuan, Z. Liu, W. Gao and Y. Dong, “Simultaneous measurement of strain and temperature using a polarization-maintaining photonic crystal fiber with stimulated Brillouin scattering,” Appl. Phys. Express, vol. 10, 2016, Art. no. , doi: .
[Crossref]

Appl. Phys. Lett. (1)

X. Dong, H. Y. Tam and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett., vol. 90, no. 15, 2007, Art. no. , doi: .
[Crossref]

IEEE Photon. Technol. Lett. (2)

J. R. Clowes, S. Syngellakis, and M. N. Zervas, “Pressure sensitivity of side-hole optical fiber sensors,” IEEE Photon. Technol. Lett., vol. 10, no. 6, pp. 857–859, 1998, doi: .
[Crossref]

S. Sulejmaniet al., “Control over the pressure sensitivity of Bragg grating-based sensors in highly birefringent microstructured optical fibers," IEEE Photon. Technol. Lett., vol. 24, no. 6, pp. 527–529, 2012, doi: .
[Crossref]

J. Lightw. Technol. (2)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1302, 1995, doi: .
[Crossref]

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009, doi: .
[Crossref]

Opt. Commun. (1)

S. Le Floch, and P. Cambon, “Study of Brillouin gain spectrum in standard single-mode optical fiber at low temperatures (1.4–370 K) and high hydrostatic pressures (1–250 bars),” Opt. Commun., vol. 219, no. 1/6, pp. 395–410, 2003, doi: .
[Crossref]

Opt. Express (3)

Opt. Lett (1)

Z. Zhu and T. G. Brown, “Stress-induced birefringence in microstructured optical fibers,” Opt. Lett, vol. 28, no. 23, pp. 2306–2308, 2003, doi: .
[Crossref]

Opt. Lett. (4)

Other (1)

L. Zhang, Z. Yang, F. Gyger, M. A. Soto and L. Thévenaz, “Rayleigh-based distributed optical fiber sensing using least mean square similarity,” presented at the 26th Int. Conf. Optical Fiber Sensors, Lausanne, Switzerland, Sep. 24–28, 2018.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.