Abstract

Advanced optical fiber reflectometry techniques enable spatially distributed measurements of true relative deformations over the length of a conventional optical fiber cable. This methodology is attractive for many applications ranging from intrusion monitoring to seismology. However, accurate quantification of the applied stimulus in general implies sophisticated implementations with poor sensitivity performance. Coherent reflectometry using chirped pulses is an appealing solution, as it provides fast dynamic strain measurements with a simple experimental deployment. Here, we analyze for the first time to our knowledge the lower performance bounds of this technique as a function of the signal-to-noise ratio of the acquired optical signal. We demonstrate that implementations realized so far have been limited by the temporal sampling used instead of the optical signal quality. Through post-processing interpolation approaches, we reach the performance limit for a given set of signal parameters, attaining unprecedented strain sensitivities (10−12 ε/√Hz) for km-length distributed sensors in conventional single-mode fibers.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Skolianos, A. Arora, M. Bernier, and M. J. F. Digonnet, “Photonics sensing at the thermodynamic limit,” Opt. Lett., vol. 42, no. 10, pp. 2018–2021, 2017.
  2. G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science, vol. 330, no. 6007, pp. 1081–1084, 2010.
  3. M. Jones, “Structural-health monitoring: A sensitive issue,” Nature Photon., vol. 2, no. 3, pp. 153–154, 2008.
  4. J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett., vol. 21, no. 13, pp. 569–570, 1985.
  5. A. H. Hartog, A. P. Leach, and M. P. Gold, “Distributed temperature sensing in solid-core fibres,” Electron. Lett., vol. 21, no. 23, pp. 1061–1062, 1985.
  6. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1302, 1995.
  7. Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009.
  8. M. Niklès, L. Thévenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett., vol. 21, no. 10, pp. 758–760, 1996.
  9. M. E. Froggatt and J. Moore, “High-spatial-resolution distributed strain measurement in optical fiber with rayleigh scatter.,” Appl. Opt., vol. 37, no. 10, pp. 1735–40, 1998.
  10. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. New York, NY, USA: Academic, 2001.
  11. K. Aoyama, K. Nakagawa, and T. Itoh, “Optical time domain reflectometry in a single-mode fiber,” IEEE J. Quantum Electron., vol. 17, no. 6, pp. 862–868, 1981.
  12. A. Bergman, T. Langer, and M. Tur, “Slope-assisted complementary-correlation optical time-domain analysis of Brillouin dynamic gratings for high sensitivity, high spatial resolution, fast and distributed fiber strain sensing,” in Proc. 5th Asia-Pacific Opt. Sensors Conf., 2015, vol. 96550V, no. Jul. 2015, pp.96550V-1–P6550V-4.
  13. H. F. Martins, K. Shi, B. C. Thomsen, S. Martin-Lopez, M. Gonzalez-Herraez, and S. J. Savory, “Real time dynamic strain monitoring of optical links using the backreflection of live PSK data,” Opt. Express, vol. 24, no. 19, pp. 22303–22318, 2016.
  14. Z. Wanget al., “Coherent Φ-OTDR based on I/Q demodulation and homodyne detection,” Opt. Express, vol. 24, no. 2, pp. 853–858, 2016.
  15. J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express, vol. 24, no. 12, pp. 13121–13133, 2016.
  16. L. Costa, H. F. Martins, S. Martin-Lopez, M. R. Fernández-Ruiz, and M. González-Herráez, “Reaching pε/√Hz sensitivity in a distributed optical fiber strain sensor,” in Proc. 26th Opt. Fiber Sensors Conf., 2018, PaperTuD3.
  17. M. R. Fernández-Ruiz, J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Laser phase-noise cancellation in chirped-pulse distributed acoustic sensors,” J. Lightw. Technol., vol. 36, no. 4, pp. 979–985, 2018.
  18. T. Schanze, “Sinc interpolation of discrete periodic signals,” IEEE Trans. Signal Process., vol. 43, no. 6, pp. 1502–1503, 1995.
  19. A. H. Quazi, “An overview on the time delay estimate in active and passive systems for target localization,” IEEE Trans. Acoust., Speech, Signal Process., vol. 29, no. 3, pp. 527–533, 1981.
  20. G. C. Carter, “Coherence and time delay estimation,” Proc. IEEE, vol. 75, no. 2, pp. 236–255, 1987.
  21. I. Céspedes, Y. Huang, J. Ophir, and S. Spratt, “Methods for estimation of subsample time delays of digitized echo signals,” Ultrason. Imag., vol. 17, no. 2, pp. 142–171, 1995.
  22. H. Gabai and A. Eyal, “On the sensitivity of distributed acoustic sensing,” Opt. Lett., vol. 41, no. 24, pp. 5648–5651, 2016.
  23. S. Liehr, S. Münzenberger, and K. Krebber, “Wavelength-scanning coherent OTDR for dynamic high strain resolution sensing,” Opt. Express, vol. 26, no. 8, pp. 10573–10588, 2018.
  24. M. Wu, X. Fan, Q. Liu, and Z. He, “Highly sensitive quasi-distributed fiber-optic acoustic sensing system by interrogating a weak reflector array,” Opt. Lett., vol. 43, no. 15, pp. 3594–3597, 2018.
  25. M. R. Fernandez-Ruiz, H. F. Martins, L. D. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Steady-sensitivity distributed acoustic sensors,” J. Lightw. Technol., vol. 36, no. 23, pp. 5690–5696, 2018.
  26. G. C. Carter, “Time delay estimation for passive sonar signal processing,” IEEE Trans. Acoust., Speech, Signal Process., vol. 29, no. 3, pp. 463–470, 1981.
  27. H. S. Hashemi and H. Rivaz, “Global time-delay estimation in ultrasound elastography,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 64, no. 10, pp. 1625–1636, 2017.
  28. C. H. Knapp and G. C. Carter, “The generalized correlation method for estimation of time delay,” IEEE Trans. Acoust., Speech, Signal Process., vol. 24, no. 4, pp. 320–327, 1976.
  29. G. Jacovitti and G. Scarano, “Discrete time techniques for time delay estimation,” IEEE Trans. Signal Process., vol. 41, no. 2, pp. 525–533, 1993.
  30. J. Ianniello, “Time delay estimation via cross-correlation in the presence of large estimation errors,” IEEE Trans. Acoust., Speech, Signal Process., vol. 30, no. 6, pp. 998–1003, 1982.
  31. H. F. Martins, P. Corredera, P. Salgado, O. Frazão, S. Martin-Lopez, and M. González-Herráez, “Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry,” Opt. Lett., vol. 38, no. 6, pp. 872–874, 2013.
  32. A. Hartog and M. Gold, “On the theory of backscattering in single-mode optical fibers,” J. Lightw. Technol., vol. 2, no. 2, pp. 76–82, 1984.
  33. Y.-C. Jenq, “Sinc interpolation errors in finite data record length,” in Proc. 10th Anniv. Adv. Technologies I & M IEEE Instrum. Meas. Technol. Conf., 1994, pp. 704–707.
  34. J. Selva, “Convolution-based trigonometric interpolation of band-limited signals,” IEEE Trans. Signal Process., vol. 56, no. 11, pp. 5465–5477, 2008.
  35. S. V Vaseghi, Advanced Digital Signal Processing and Noise Reduction. Hoboken, NJ, USA: Wiley, 2008.
  36. J. O. Smith, Mathematics of the Discrete Fourier Transform (DFT) With Audio Applications, 2nd. ed. Burlingame, CA: W3K Publishing, 2007.
  37. S. Reece and D. Nicholson, “Tighter alternatives to the Cramér-Rao lower bound for discrete-time filtering,” in Proc. 8th Int. Conf. Inf. Fusion, 2005, vol. 1, pp. 101–106.
  38. M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Opt. Express, vol. 23, no. 19, pp. 24923–24936, 2015.
  39. P. S. Westbrooket al., “Kilometer length, low loss enhanced back scattering fiber for distributed sensing,” in Proc. 25th Opt. Fiber Sensors Conf., 2017, pp. 5–8.
  40. M. R. Fernández-Ruiz, H. F. Martins, J. Pastor-Graells, S. Martin-Lopez, and M. Gonzalez-Herraez, “Phase-sensitive OTDR probe pulse shapes robust against modulation-instability fading,” Opt. Lett., vol. 41, no. 24, pp. 5756–5759, 2016.
  41. J. Pastor-Graellset al., “SNR enhancement in high-resolution phase-sensitive OTDR systems using chirped pulse amplification concepts,” Opt. Lett., vol. 42, no. 9, pp. 1728–1731, 2017.
  42. J. Ghorpade, “GPGPU processing in CUDA architecture,” Adv. Comput., Int. J., vol. 3, no. 1, pp. 105–120, 2012.

2018 (4)

M. R. Fernández-Ruiz, J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Laser phase-noise cancellation in chirped-pulse distributed acoustic sensors,” J. Lightw. Technol., vol. 36, no. 4, pp. 979–985, 2018.

S. Liehr, S. Münzenberger, and K. Krebber, “Wavelength-scanning coherent OTDR for dynamic high strain resolution sensing,” Opt. Express, vol. 26, no. 8, pp. 10573–10588, 2018.

M. Wu, X. Fan, Q. Liu, and Z. He, “Highly sensitive quasi-distributed fiber-optic acoustic sensing system by interrogating a weak reflector array,” Opt. Lett., vol. 43, no. 15, pp. 3594–3597, 2018.

M. R. Fernandez-Ruiz, H. F. Martins, L. D. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Steady-sensitivity distributed acoustic sensors,” J. Lightw. Technol., vol. 36, no. 23, pp. 5690–5696, 2018.

2017 (3)

2016 (5)

2015 (1)

2013 (1)

2012 (1)

J. Ghorpade, “GPGPU processing in CUDA architecture,” Adv. Comput., Int. J., vol. 3, no. 1, pp. 105–120, 2012.

2010 (1)

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science, vol. 330, no. 6007, pp. 1081–1084, 2010.

2009 (1)

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009.

2008 (2)

M. Jones, “Structural-health monitoring: A sensitive issue,” Nature Photon., vol. 2, no. 3, pp. 153–154, 2008.

J. Selva, “Convolution-based trigonometric interpolation of band-limited signals,” IEEE Trans. Signal Process., vol. 56, no. 11, pp. 5465–5477, 2008.

1998 (1)

1996 (1)

1995 (3)

I. Céspedes, Y. Huang, J. Ophir, and S. Spratt, “Methods for estimation of subsample time delays of digitized echo signals,” Ultrason. Imag., vol. 17, no. 2, pp. 142–171, 1995.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1302, 1995.

T. Schanze, “Sinc interpolation of discrete periodic signals,” IEEE Trans. Signal Process., vol. 43, no. 6, pp. 1502–1503, 1995.

1993 (1)

G. Jacovitti and G. Scarano, “Discrete time techniques for time delay estimation,” IEEE Trans. Signal Process., vol. 41, no. 2, pp. 525–533, 1993.

1987 (1)

G. C. Carter, “Coherence and time delay estimation,” Proc. IEEE, vol. 75, no. 2, pp. 236–255, 1987.

1985 (2)

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett., vol. 21, no. 13, pp. 569–570, 1985.

A. H. Hartog, A. P. Leach, and M. P. Gold, “Distributed temperature sensing in solid-core fibres,” Electron. Lett., vol. 21, no. 23, pp. 1061–1062, 1985.

1984 (1)

A. Hartog and M. Gold, “On the theory of backscattering in single-mode optical fibers,” J. Lightw. Technol., vol. 2, no. 2, pp. 76–82, 1984.

1982 (1)

J. Ianniello, “Time delay estimation via cross-correlation in the presence of large estimation errors,” IEEE Trans. Acoust., Speech, Signal Process., vol. 30, no. 6, pp. 998–1003, 1982.

1981 (3)

G. C. Carter, “Time delay estimation for passive sonar signal processing,” IEEE Trans. Acoust., Speech, Signal Process., vol. 29, no. 3, pp. 463–470, 1981.

K. Aoyama, K. Nakagawa, and T. Itoh, “Optical time domain reflectometry in a single-mode fiber,” IEEE J. Quantum Electron., vol. 17, no. 6, pp. 862–868, 1981.

A. H. Quazi, “An overview on the time delay estimate in active and passive systems for target localization,” IEEE Trans. Acoust., Speech, Signal Process., vol. 29, no. 3, pp. 527–533, 1981.

1976 (1)

C. H. Knapp and G. C. Carter, “The generalized correlation method for estimation of time delay,” IEEE Trans. Acoust., Speech, Signal Process., vol. 24, no. 4, pp. 320–327, 1976.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. New York, NY, USA: Academic, 2001.

Aoyama, K.

K. Aoyama, K. Nakagawa, and T. Itoh, “Optical time domain reflectometry in a single-mode fiber,” IEEE J. Quantum Electron., vol. 17, no. 6, pp. 862–868, 1981.

Arora, A.

Avino, S.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science, vol. 330, no. 6007, pp. 1081–1084, 2010.

Bergman, A.

A. Bergman, T. Langer, and M. Tur, “Slope-assisted complementary-correlation optical time-domain analysis of Brillouin dynamic gratings for high sensitivity, high spatial resolution, fast and distributed fiber strain sensing,” in Proc. 5th Asia-Pacific Opt. Sensors Conf., 2015, vol. 96550V, no. Jul. 2015, pp.96550V-1–P6550V-4.

Bernier, M.

Bibby, G. W.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett., vol. 21, no. 13, pp. 569–570, 1985.

Carter, G. C.

G. C. Carter, “Coherence and time delay estimation,” Proc. IEEE, vol. 75, no. 2, pp. 236–255, 1987.

G. C. Carter, “Time delay estimation for passive sonar signal processing,” IEEE Trans. Acoust., Speech, Signal Process., vol. 29, no. 3, pp. 463–470, 1981.

C. H. Knapp and G. C. Carter, “The generalized correlation method for estimation of time delay,” IEEE Trans. Acoust., Speech, Signal Process., vol. 24, no. 4, pp. 320–327, 1976.

Céspedes, I.

I. Céspedes, Y. Huang, J. Ophir, and S. Spratt, “Methods for estimation of subsample time delays of digitized echo signals,” Ultrason. Imag., vol. 17, no. 2, pp. 142–171, 1995.

Corredera, P.

Costa, L.

L. Costa, H. F. Martins, S. Martin-Lopez, M. R. Fernández-Ruiz, and M. González-Herráez, “Reaching pε/√Hz sensitivity in a distributed optical fiber strain sensor,” in Proc. 26th Opt. Fiber Sensors Conf., 2018, PaperTuD3.

Costa, L. D.

M. R. Fernandez-Ruiz, H. F. Martins, L. D. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Steady-sensitivity distributed acoustic sensors,” J. Lightw. Technol., vol. 36, no. 23, pp. 5690–5696, 2018.

Dakin, J. P.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett., vol. 21, no. 13, pp. 569–570, 1985.

De Natale, P.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science, vol. 330, no. 6007, pp. 1081–1084, 2010.

Digonnet, M. J. F.

Eyal, A.

Fan, X.

Fernandez-Ruiz, M. R.

M. R. Fernandez-Ruiz, H. F. Martins, L. D. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Steady-sensitivity distributed acoustic sensors,” J. Lightw. Technol., vol. 36, no. 23, pp. 5690–5696, 2018.

Fernández-Ruiz, M. R.

M. R. Fernández-Ruiz, J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Laser phase-noise cancellation in chirped-pulse distributed acoustic sensors,” J. Lightw. Technol., vol. 36, no. 4, pp. 979–985, 2018.

M. R. Fernández-Ruiz, H. F. Martins, J. Pastor-Graells, S. Martin-Lopez, and M. Gonzalez-Herraez, “Phase-sensitive OTDR probe pulse shapes robust against modulation-instability fading,” Opt. Lett., vol. 41, no. 24, pp. 5756–5759, 2016.

L. Costa, H. F. Martins, S. Martin-Lopez, M. R. Fernández-Ruiz, and M. González-Herráez, “Reaching pε/√Hz sensitivity in a distributed optical fiber strain sensor,” in Proc. 26th Opt. Fiber Sensors Conf., 2018, PaperTuD3.

Ferraro, P.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science, vol. 330, no. 6007, pp. 1081–1084, 2010.

Frazão, O.

Froggatt, M. E.

Gabai, H.

Gagliardi, G.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science, vol. 330, no. 6007, pp. 1081–1084, 2010.

Garcia-Ruiz, A.

M. R. Fernández-Ruiz, J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Laser phase-noise cancellation in chirped-pulse distributed acoustic sensors,” J. Lightw. Technol., vol. 36, no. 4, pp. 979–985, 2018.

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express, vol. 24, no. 12, pp. 13121–13133, 2016.

Ghorpade, J.

J. Ghorpade, “GPGPU processing in CUDA architecture,” Adv. Comput., Int. J., vol. 3, no. 1, pp. 105–120, 2012.

Gold, M.

A. Hartog and M. Gold, “On the theory of backscattering in single-mode optical fibers,” J. Lightw. Technol., vol. 2, no. 2, pp. 76–82, 1984.

Gold, M. P.

A. H. Hartog, A. P. Leach, and M. P. Gold, “Distributed temperature sensing in solid-core fibres,” Electron. Lett., vol. 21, no. 23, pp. 1061–1062, 1985.

Gonzalez-Herraez, M.

M. R. Fernández-Ruiz, J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Laser phase-noise cancellation in chirped-pulse distributed acoustic sensors,” J. Lightw. Technol., vol. 36, no. 4, pp. 979–985, 2018.

M. R. Fernandez-Ruiz, H. F. Martins, L. D. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Steady-sensitivity distributed acoustic sensors,” J. Lightw. Technol., vol. 36, no. 23, pp. 5690–5696, 2018.

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express, vol. 24, no. 12, pp. 13121–13133, 2016.

H. F. Martins, K. Shi, B. C. Thomsen, S. Martin-Lopez, M. Gonzalez-Herraez, and S. J. Savory, “Real time dynamic strain monitoring of optical links using the backreflection of live PSK data,” Opt. Express, vol. 24, no. 19, pp. 22303–22318, 2016.

M. R. Fernández-Ruiz, H. F. Martins, J. Pastor-Graells, S. Martin-Lopez, and M. Gonzalez-Herraez, “Phase-sensitive OTDR probe pulse shapes robust against modulation-instability fading,” Opt. Lett., vol. 41, no. 24, pp. 5756–5759, 2016.

M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Opt. Express, vol. 23, no. 19, pp. 24923–24936, 2015.

González-Herráez, M.

H. F. Martins, P. Corredera, P. Salgado, O. Frazão, S. Martin-Lopez, and M. González-Herráez, “Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry,” Opt. Lett., vol. 38, no. 6, pp. 872–874, 2013.

L. Costa, H. F. Martins, S. Martin-Lopez, M. R. Fernández-Ruiz, and M. González-Herráez, “Reaching pε/√Hz sensitivity in a distributed optical fiber strain sensor,” in Proc. 26th Opt. Fiber Sensors Conf., 2018, PaperTuD3.

Hartog, A.

A. Hartog and M. Gold, “On the theory of backscattering in single-mode optical fibers,” J. Lightw. Technol., vol. 2, no. 2, pp. 76–82, 1984.

Hartog, A. H.

A. H. Hartog, A. P. Leach, and M. P. Gold, “Distributed temperature sensing in solid-core fibres,” Electron. Lett., vol. 21, no. 23, pp. 1061–1062, 1985.

Hashemi, H. S.

H. S. Hashemi and H. Rivaz, “Global time-delay estimation in ultrasound elastography,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 64, no. 10, pp. 1625–1636, 2017.

He, Z.

Hogari, K.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009.

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1302, 1995.

Huang, Y.

I. Céspedes, Y. Huang, J. Ophir, and S. Spratt, “Methods for estimation of subsample time delays of digitized echo signals,” Ultrason. Imag., vol. 17, no. 2, pp. 142–171, 1995.

Ianniello, J.

J. Ianniello, “Time delay estimation via cross-correlation in the presence of large estimation errors,” IEEE Trans. Acoust., Speech, Signal Process., vol. 30, no. 6, pp. 998–1003, 1982.

Imahama, M.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009.

Itoh, T.

K. Aoyama, K. Nakagawa, and T. Itoh, “Optical time domain reflectometry in a single-mode fiber,” IEEE J. Quantum Electron., vol. 17, no. 6, pp. 862–868, 1981.

Jacovitti, G.

G. Jacovitti and G. Scarano, “Discrete time techniques for time delay estimation,” IEEE Trans. Signal Process., vol. 41, no. 2, pp. 525–533, 1993.

Jenq, Y.-C.

Y.-C. Jenq, “Sinc interpolation errors in finite data record length,” in Proc. 10th Anniv. Adv. Technologies I & M IEEE Instrum. Meas. Technol. Conf., 1994, pp. 704–707.

Jones, M.

M. Jones, “Structural-health monitoring: A sensitive issue,” Nature Photon., vol. 2, no. 3, pp. 153–154, 2008.

Knapp, C. H.

C. H. Knapp and G. C. Carter, “The generalized correlation method for estimation of time delay,” IEEE Trans. Acoust., Speech, Signal Process., vol. 24, no. 4, pp. 320–327, 1976.

Koyamada, Y.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1302, 1995.

Krebber, K.

Kubota, K.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009.

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1302, 1995.

Langer, T.

A. Bergman, T. Langer, and M. Tur, “Slope-assisted complementary-correlation optical time-domain analysis of Brillouin dynamic gratings for high sensitivity, high spatial resolution, fast and distributed fiber strain sensing,” in Proc. 5th Asia-Pacific Opt. Sensors Conf., 2015, vol. 96550V, no. Jul. 2015, pp.96550V-1–P6550V-4.

Leach, A. P.

A. H. Hartog, A. P. Leach, and M. P. Gold, “Distributed temperature sensing in solid-core fibres,” Electron. Lett., vol. 21, no. 23, pp. 1061–1062, 1985.

Liehr, S.

Liu, Q.

Lu, X.

Martin-Lopez, S.

M. R. Fernández-Ruiz, J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Laser phase-noise cancellation in chirped-pulse distributed acoustic sensors,” J. Lightw. Technol., vol. 36, no. 4, pp. 979–985, 2018.

M. R. Fernandez-Ruiz, H. F. Martins, L. D. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Steady-sensitivity distributed acoustic sensors,” J. Lightw. Technol., vol. 36, no. 23, pp. 5690–5696, 2018.

H. F. Martins, K. Shi, B. C. Thomsen, S. Martin-Lopez, M. Gonzalez-Herraez, and S. J. Savory, “Real time dynamic strain monitoring of optical links using the backreflection of live PSK data,” Opt. Express, vol. 24, no. 19, pp. 22303–22318, 2016.

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express, vol. 24, no. 12, pp. 13121–13133, 2016.

M. R. Fernández-Ruiz, H. F. Martins, J. Pastor-Graells, S. Martin-Lopez, and M. Gonzalez-Herraez, “Phase-sensitive OTDR probe pulse shapes robust against modulation-instability fading,” Opt. Lett., vol. 41, no. 24, pp. 5756–5759, 2016.

H. F. Martins, P. Corredera, P. Salgado, O. Frazão, S. Martin-Lopez, and M. González-Herráez, “Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry,” Opt. Lett., vol. 38, no. 6, pp. 872–874, 2013.

L. Costa, H. F. Martins, S. Martin-Lopez, M. R. Fernández-Ruiz, and M. González-Herráez, “Reaching pε/√Hz sensitivity in a distributed optical fiber strain sensor,” in Proc. 26th Opt. Fiber Sensors Conf., 2018, PaperTuD3.

Martins, H. F.

M. R. Fernández-Ruiz, J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Laser phase-noise cancellation in chirped-pulse distributed acoustic sensors,” J. Lightw. Technol., vol. 36, no. 4, pp. 979–985, 2018.

M. R. Fernandez-Ruiz, H. F. Martins, L. D. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Steady-sensitivity distributed acoustic sensors,” J. Lightw. Technol., vol. 36, no. 23, pp. 5690–5696, 2018.

J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses,” Opt. Express, vol. 24, no. 12, pp. 13121–13133, 2016.

H. F. Martins, K. Shi, B. C. Thomsen, S. Martin-Lopez, M. Gonzalez-Herraez, and S. J. Savory, “Real time dynamic strain monitoring of optical links using the backreflection of live PSK data,” Opt. Express, vol. 24, no. 19, pp. 22303–22318, 2016.

M. R. Fernández-Ruiz, H. F. Martins, J. Pastor-Graells, S. Martin-Lopez, and M. Gonzalez-Herraez, “Phase-sensitive OTDR probe pulse shapes robust against modulation-instability fading,” Opt. Lett., vol. 41, no. 24, pp. 5756–5759, 2016.

M. A. Soto, X. Lu, H. F. Martins, M. Gonzalez-Herraez, and L. Thévenaz, “Distributed phase birefringence measurements based on polarization correlation in phase-sensitive optical time-domain reflectometers,” Opt. Express, vol. 23, no. 19, pp. 24923–24936, 2015.

H. F. Martins, P. Corredera, P. Salgado, O. Frazão, S. Martin-Lopez, and M. González-Herráez, “Modulation instability-induced fading in phase-sensitive optical time-domain reflectometry,” Opt. Lett., vol. 38, no. 6, pp. 872–874, 2013.

L. Costa, H. F. Martins, S. Martin-Lopez, M. R. Fernández-Ruiz, and M. González-Herráez, “Reaching pε/√Hz sensitivity in a distributed optical fiber strain sensor,” in Proc. 26th Opt. Fiber Sensors Conf., 2018, PaperTuD3.

Moore, J.

Münzenberger, S.

Nakagawa, K.

K. Aoyama, K. Nakagawa, and T. Itoh, “Optical time domain reflectometry in a single-mode fiber,” IEEE J. Quantum Electron., vol. 17, no. 6, pp. 862–868, 1981.

Nicholson, D.

S. Reece and D. Nicholson, “Tighter alternatives to the Cramér-Rao lower bound for discrete-time filtering,” in Proc. 8th Int. Conf. Inf. Fusion, 2005, vol. 1, pp. 101–106.

Niklès, M.

Ophir, J.

I. Céspedes, Y. Huang, J. Ophir, and S. Spratt, “Methods for estimation of subsample time delays of digitized echo signals,” Ultrason. Imag., vol. 17, no. 2, pp. 142–171, 1995.

Pastor-Graells, J.

Pratt, D. J.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett., vol. 21, no. 13, pp. 569–570, 1985.

Quazi, A. H.

A. H. Quazi, “An overview on the time delay estimate in active and passive systems for target localization,” IEEE Trans. Acoust., Speech, Signal Process., vol. 29, no. 3, pp. 527–533, 1981.

Reece, S.

S. Reece and D. Nicholson, “Tighter alternatives to the Cramér-Rao lower bound for discrete-time filtering,” in Proc. 8th Int. Conf. Inf. Fusion, 2005, vol. 1, pp. 101–106.

Rivaz, H.

H. S. Hashemi and H. Rivaz, “Global time-delay estimation in ultrasound elastography,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 64, no. 10, pp. 1625–1636, 2017.

Robert, P. A.

Ross, J. N.

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett., vol. 21, no. 13, pp. 569–570, 1985.

Salgado, P.

Salza, M.

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science, vol. 330, no. 6007, pp. 1081–1084, 2010.

Savory, S. J.

Scarano, G.

G. Jacovitti and G. Scarano, “Discrete time techniques for time delay estimation,” IEEE Trans. Signal Process., vol. 41, no. 2, pp. 525–533, 1993.

Schanze, T.

T. Schanze, “Sinc interpolation of discrete periodic signals,” IEEE Trans. Signal Process., vol. 43, no. 6, pp. 1502–1503, 1995.

Selva, J.

J. Selva, “Convolution-based trigonometric interpolation of band-limited signals,” IEEE Trans. Signal Process., vol. 56, no. 11, pp. 5465–5477, 2008.

Shi, K.

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1302, 1995.

Skolianos, G.

Smith, J. O.

J. O. Smith, Mathematics of the Discrete Fourier Transform (DFT) With Audio Applications, 2nd. ed. Burlingame, CA: W3K Publishing, 2007.

Soto, M. A.

Spratt, S.

I. Céspedes, Y. Huang, J. Ophir, and S. Spratt, “Methods for estimation of subsample time delays of digitized echo signals,” Ultrason. Imag., vol. 17, no. 2, pp. 142–171, 1995.

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1302, 1995.

Thévenaz, L.

Thomsen, B. C.

Tur, M.

A. Bergman, T. Langer, and M. Tur, “Slope-assisted complementary-correlation optical time-domain analysis of Brillouin dynamic gratings for high sensitivity, high spatial resolution, fast and distributed fiber strain sensing,” in Proc. 5th Asia-Pacific Opt. Sensors Conf., 2015, vol. 96550V, no. Jul. 2015, pp.96550V-1–P6550V-4.

Vaseghi, S. V

S. V Vaseghi, Advanced Digital Signal Processing and Noise Reduction. Hoboken, NJ, USA: Wiley, 2008.

Wang, Z.

Westbrook, P. S.

P. S. Westbrooket al., “Kilometer length, low loss enhanced back scattering fiber for distributed sensing,” in Proc. 25th Opt. Fiber Sensors Conf., 2017, pp. 5–8.

Wu, M.

Adv. Comput., Int. J. (1)

J. Ghorpade, “GPGPU processing in CUDA architecture,” Adv. Comput., Int. J., vol. 3, no. 1, pp. 105–120, 2012.

Appl. Opt. (1)

Electron. Lett. (2)

J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett., vol. 21, no. 13, pp. 569–570, 1985.

A. H. Hartog, A. P. Leach, and M. P. Gold, “Distributed temperature sensing in solid-core fibres,” Electron. Lett., vol. 21, no. 23, pp. 1061–1062, 1985.

IEEE J. Quantum Electron. (1)

K. Aoyama, K. Nakagawa, and T. Itoh, “Optical time domain reflectometry in a single-mode fiber,” IEEE J. Quantum Electron., vol. 17, no. 6, pp. 862–868, 1981.

IEEE Trans. Acoust., Speech, Signal Process. (4)

A. H. Quazi, “An overview on the time delay estimate in active and passive systems for target localization,” IEEE Trans. Acoust., Speech, Signal Process., vol. 29, no. 3, pp. 527–533, 1981.

G. C. Carter, “Time delay estimation for passive sonar signal processing,” IEEE Trans. Acoust., Speech, Signal Process., vol. 29, no. 3, pp. 463–470, 1981.

C. H. Knapp and G. C. Carter, “The generalized correlation method for estimation of time delay,” IEEE Trans. Acoust., Speech, Signal Process., vol. 24, no. 4, pp. 320–327, 1976.

J. Ianniello, “Time delay estimation via cross-correlation in the presence of large estimation errors,” IEEE Trans. Acoust., Speech, Signal Process., vol. 30, no. 6, pp. 998–1003, 1982.

IEEE Trans. Signal Process. (3)

G. Jacovitti and G. Scarano, “Discrete time techniques for time delay estimation,” IEEE Trans. Signal Process., vol. 41, no. 2, pp. 525–533, 1993.

J. Selva, “Convolution-based trigonometric interpolation of band-limited signals,” IEEE Trans. Signal Process., vol. 56, no. 11, pp. 5465–5477, 2008.

T. Schanze, “Sinc interpolation of discrete periodic signals,” IEEE Trans. Signal Process., vol. 43, no. 6, pp. 1502–1503, 1995.

IEEE Trans. Ultrason. Ferroelect. Freq. Control (1)

H. S. Hashemi and H. Rivaz, “Global time-delay estimation in ultrasound elastography,” IEEE Trans. Ultrason. Ferroelect. Freq. Control, vol. 64, no. 10, pp. 1625–1636, 2017.

J. Lightw. Technol. (5)

M. R. Fernández-Ruiz, J. Pastor-Graells, H. F. Martins, A. Garcia-Ruiz, S. Martin-Lopez, and M. Gonzalez-Herraez, “Laser phase-noise cancellation in chirped-pulse distributed acoustic sensors,” J. Lightw. Technol., vol. 36, no. 4, pp. 979–985, 2018.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1302, 1995.

Y. Koyamada, M. Imahama, K. Kubota, and K. Hogari, “Fiber-optic distributed strain and temperature sensing with very high measurand resolution over long range using coherent OTDR,” J. Lightw. Technol., vol. 27, no. 9, pp. 1142–1146, 2009.

M. R. Fernandez-Ruiz, H. F. Martins, L. D. Costa, S. Martin-Lopez, and M. Gonzalez-Herraez, “Steady-sensitivity distributed acoustic sensors,” J. Lightw. Technol., vol. 36, no. 23, pp. 5690–5696, 2018.

A. Hartog and M. Gold, “On the theory of backscattering in single-mode optical fibers,” J. Lightw. Technol., vol. 2, no. 2, pp. 76–82, 1984.

Nature Photon. (1)

M. Jones, “Structural-health monitoring: A sensitive issue,” Nature Photon., vol. 2, no. 3, pp. 153–154, 2008.

Opt. Express (5)

Opt. Lett. (7)

Proc. IEEE (1)

G. C. Carter, “Coherence and time delay estimation,” Proc. IEEE, vol. 75, no. 2, pp. 236–255, 1987.

Science (1)

G. Gagliardi, M. Salza, S. Avino, P. Ferraro, and P. De Natale, “Probing the ultimate limit of fiber-optic strain sensing,” Science, vol. 330, no. 6007, pp. 1081–1084, 2010.

Ultrason. Imag. (1)

I. Céspedes, Y. Huang, J. Ophir, and S. Spratt, “Methods for estimation of subsample time delays of digitized echo signals,” Ultrason. Imag., vol. 17, no. 2, pp. 142–171, 1995.

Other (8)

S. V Vaseghi, Advanced Digital Signal Processing and Noise Reduction. Hoboken, NJ, USA: Wiley, 2008.

J. O. Smith, Mathematics of the Discrete Fourier Transform (DFT) With Audio Applications, 2nd. ed. Burlingame, CA: W3K Publishing, 2007.

S. Reece and D. Nicholson, “Tighter alternatives to the Cramér-Rao lower bound for discrete-time filtering,” in Proc. 8th Int. Conf. Inf. Fusion, 2005, vol. 1, pp. 101–106.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. New York, NY, USA: Academic, 2001.

L. Costa, H. F. Martins, S. Martin-Lopez, M. R. Fernández-Ruiz, and M. González-Herráez, “Reaching pε/√Hz sensitivity in a distributed optical fiber strain sensor,” in Proc. 26th Opt. Fiber Sensors Conf., 2018, PaperTuD3.

A. Bergman, T. Langer, and M. Tur, “Slope-assisted complementary-correlation optical time-domain analysis of Brillouin dynamic gratings for high sensitivity, high spatial resolution, fast and distributed fiber strain sensing,” in Proc. 5th Asia-Pacific Opt. Sensors Conf., 2015, vol. 96550V, no. Jul. 2015, pp.96550V-1–P6550V-4.

P. S. Westbrooket al., “Kilometer length, low loss enhanced back scattering fiber for distributed sensing,” in Proc. 25th Opt. Fiber Sensors Conf., 2017, pp. 5–8.

Y.-C. Jenq, “Sinc interpolation errors in finite data record length,” in Proc. 10th Anniv. Adv. Technologies I & M IEEE Instrum. Meas. Technol. Conf., 1994, pp. 704–707.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.