Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 37,
  • Issue 17,
  • pp. 4295-4307
  • (2019)

Complexity Analysis of the Kramers–Kronig Receiver

Not Accessible

Your library or personal account may give you access

Abstract

We propose a low-complexity digital implementation of the Kramers–Kronig receiver and analyze its performance and complexity. In simulations and experiments, we find that a relatively small number of filter taps is sufficient to achieve a reasonably high accuracy for the phase retrieval and for the reconstruction of the complex field. We show that the Kramers–Kronig receiver performance strongly depends on details of the system design. Unnecessarily broad optical filters decrease the reception quality, because additional noise makes the violation of the minimum-phase condition more likely. Narrow optical filters, however, impose high local oscillator laser stability and reduce the flexibility of this kind of receiver architecture. Further, we demonstrate Kramers–Kronig reception of 16 QAM signals at a net data rate of 267 Gbit/s after transmission over 300 km of standard single-mode fiber. We compare the performance with a conventional intradyne receiver. In a back-to-back setting, we increase the net data rate to 300 Gbit/s.

PDF Article
More Like This
Kramers–Kronig receivers

Antonio Mecozzi, Cristian Antonelli, and Mark Shtaif
Adv. Opt. Photon. 11(3) 480-517 (2019)

Kramers–Kronig coherent receiver

Antonio Mecozzi, Cristian Antonelli, and Mark Shtaif
Optica 3(11) 1220-1227 (2016)

Kramers-Kronig receiver operable without digital upsampling

Tianwai Bo and Hoon Kim
Opt. Express 26(11) 13810-13818 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved