Abstract

At the lowest layer of today's communication networks is an optical line system (OLS), a physical network of equipment, which carries high-frequency analog light signals over thousands of kilometers. Traditionally, an OLS was delivered as a turn-key solution by a single vendor. Within an OLS, reconfigurable optical add/drop multiplexers (ROADMs) are active devices responsible for routing spectral chunks between input and output ports. ROADMs are arguably the most complex physical component of an OLS. In this paper, we describe an open design of a Czech Light ROADM, including the optical hardware, electronics, software, and the northbound communication interface. The performance of the ROADMs is evaluated in two test scenarios.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Gringeriet al., “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, 2010.
  2. J. Radil, J. Vojtěch, M. Karásek, and S. Šíma, “Dark fibre networks and how to light them,” in Proc. 4th Quilt Opt. Netw. Workshop, Fort Lauderdale, FL, USA, 2006. [Online]. Available: https://photonics.cesnet.cz/_media/publications/fiber-optics/2006/radil-quilt.pdf
  3. J. Kundrátet al., “YANG/NETCONF ROADM: Evolving open DWDM toward SDN applications,” J. Lightw. Technol., vol. 36, no. 15, pp. 3105–3114, 2018. [Online]. Available: http://jlt.osa.org/abstract.cfm?URI=jlt-36-15-3105
  4. R. Enns, M. Björklund, A. Bierman, and J. Schönwälder, “Network Configuration Protocol (NETCONF),” RFC 6241, 2011. [Online]. Available: https://rfc-editor.org/rfc/rfc6241.txt
  5. R. Morroet al., “Automated end to end carrier ethernet provisioning over a disaggregated WDM metro network with a hierarchical SDN control and monitoring platform,” in Proc. Eur. Conf. Opt. Commun., 2018, pp. 1–3.
  6. Tencent trials ADVA FSP 3000 TeraFlex$^{\rm TM}$ 600G DCI technology over its open line system OPC-4. Press release, 2018. [Online]. Available: https://www.advaoptical.com/en/newsroom/press-releases/20181112-tencent-trials-adva-fsp-3000-teraflex-600g-dci-technology-over-its-open-line-system-o pc-4
  7. Spectral Grids for WDM applications: DWDM Frequency Grid, ITU-T Std. G.694.1, Rev. 02/2012, 2012. [Online]. Available: https://www.itu.int/rec/T-REC-G.694.1-201202-I/en
  8. K. Ly, Random mating IL vs. IL by master jumper. Whitepaper. SENKO. 2012. [Online]. Available: http://www.senko.com/fiber/pdf_brochure/IL-random-mating-master-jumper.pdf
  9. P. M. Becker, A. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology. Amsterdam, The Netherlands: Elsevier, 1999.
  10. A. E. Willner and S.-M. Hwan, “Transmission of many WDM channels through a cascade of EDFA's in long-distance links and ring networks,” J. Lightw. Technol., vol. 13, no. 5, pp. 802–816, 1995.
  11. P. Škoda and J. Vojtěch, “White paper—Optical reach of photonic services—GÉANT,” 2013. [Online]. Available: https://geant3.archive.geant.org/Media_Centre/Media_Library/Media%20Library/GN3-13-162_MJ1.2.3_White-Paper_Optical-Reach-of-Photonic-Services_v3.pdf
  12. Optical Safety Procedures and Requirements for Optical Transmission Systems, ITU-T Standard G.664, Rev. 10/2012, 2012. [Online]. Available: https://www.itu.int/rec/T-REC-G.664-201210-I/en
  13. “OpenROADM v2 device whitepaper (version 1.1),” 2018. [Online]. Available: https://0201.nccdn.net/1_2/000/000/134/c50/Open-ROADM-MSA-release-2-Dev ice-White-paper-v1-1.pdf
  14. N. Parkin, M. Bartur, D. Nesset, and D. Jenkins, “Gigabit SFP transceiver with integrated optical time domain reflectometer for ethernet access services,” in Proc. 39th Eur. Conf. Exhib. Opt. Commun., 2013, pp. 1–3.
  15. B. Collings, “New devices enabling software-defined optical networks,” IEEE Commun. Mag., vol. 51, no. 3, pp. 66–71, 2013.
  16. S. Sarmientoet al., “Cost-effective DWDM ROADM design for flexible sustainable optical metro-access networks,” J. Opt. Commun. Netw., vol. 9, no. 12, pp. 1116–1124, 2017. [Online]. Available:http://jocn.osa.org/abstract.cfm?URI=jocn-9-12-1116
  17. R. Shankaret al., “Multi-degree ROADM based on wavelength selective switches: Architectures and scalability,” Opt. Commun., vol. 279, no. 1, pp. 94–100, 2007.
  18. V. Abedifaret al., “Design and simulation of a ROADM-based DWDM network,” in Proc. 21st Iranian Conf. Elect. Eng., 2013, pp. 1–4.
  19. Y. Li, L. Gao, G. Shen, and L. Peng, “Impact of ROADM colorless, directionless, and contentionless (CDC) features on optical network performance [invited],” IEEE/OSA J. Opt. Commun. Netw., vol. 4, no. 11, pp. B58–B67, 2012.
  20. J. M. Simmons, “A closer look at ROADM contention,” IEEE Commun. Mag., vol. 55, no. 2, pp. 160–166, 2017.
  21. B. C. Collings, “Advanced ROADM technologies and architectures,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, Paper Tu3D.3.
  22. M. Filer and S. Tibuleac, “N-degree ROADM architecture comparison: Broadcast-and-select versus route-and-select in 120 Gb/s DP-QPSK transmission systems,” in Proc. Opt. Fiber Commun. Conf., 2014, Paper Th1I.2.
  23. S.-K. Liawet al., “Bidirectional reconfigurable optical add-drop multiplexer with power compensation built-in optical amplifiers,” J. Opt. Netw., vol. 7, no. 7, pp. 662–672, 2008. [Online]. Available:http://jon.osa.org/abstract.cfm?URI=jon-7-7-662
  24. L. Velascoet al., “Learning from the optical spectrum: Soft-failure identification and localization [invited],” in Proc. Opt. Fiber Commun. Conf. Expo., 2018, Paper W1G.1.
  25. M. Fileret al., “Demonstration and performance analysis of 4 Tb/s DWDM metro-DCI system with 100 G PAM4 QSFP28 modules,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, Paper W4D.4.
  26. H. Wessinget al., “Alien wavelengths in national research and education network infrastructures based on open line systems: Challenges and opportunities,” J. Opt. Commun. Netw., vol. 11, no. 3, pp. 118–129, 2019. [Online]. Available: http://jocn.osa.org/abstract.cfm?URI=jocn-11-3-118
  27. K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179, 2016.
  28. “Tap PD array with I2C, single-mode—Oplink,” Datasheet, 2018. [Online]. Available: http://www.oplink.com/passive/detail/110.html
  29. “SolidRun ClearFog Base,” 2018. [Online]. Available: https://www.solid-run.com/marvell-armada-family/clearfog/
  30. “LTC4316—Single I2C/SMBus address translator,” Datasheet, 2018. [Online]. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/431 6fa.pdf
  31. “MAX14830 quad serial UART with 128-word FIFOs,” Datasheet, 2018. [Online]. Available: https://www.maximintegrated.com/en/products/interface/controllers-expan ders/MAX14830.html
  32. “Accepted contribution of CESNET to the Linux kernel,” Git repository, 2019. [Online]. Available: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=author&q=jan.kundrat%40cesnet.cz
  33. PMBus$^{\rm TM}$ power management defined. Project homepage, 2010. [Online]. Available: http://pmbus.org/
  34. “ADT7463: Remote thermal controller and voltage monitor,” Datasheet, 2018. [Online]. Available: https://www.onsemi.com/pub/Collateral/ADT7463-D.PDF
  35. sysrepo—YANG-based configuration and operational state data store for Unix/Linux applications. Project homepage, 2019. [Online]. Available: http://www.sysrepo.org/
  36. T. Petazzoni, “Buildroot: A nice, simple and efficient embedded Linux build system,” in Proc. Embedded Linux Syst. Conf., 2012. [Online]. Available: http://thomas.enix.org/pub/conf/rmll2012/buildroot.pdf
  37. L. Poettering, K. Sievers, and T. Leemhuis, “Control centre: The systemd Linux init system,” The H Open, 2012. [Online]. Available: http://www.h-online.com/open/features/Control-Centre-The-systemd-Linux-init-system-1565543.html
  38. M. Björklundet al., “Network Management Datastore Architecture (NMDA),” RFC 8342, 2018. [Online]. Available: https://rfc-editor.org/rfc/rfc8342.txt
  39. T. Szyrkowiec, A. Autenrieth, and W. Kellerer, “Optical network models and their application to software-defined network management,” Int. J. Opt., vol. 2017, 2017, Art. no. .
  40. M. D. Leenheer, Y. Higuchi, and G. Parulkar, “An open controller for the disaggregated optical network,” in Proc. Int. Conf. Opt. Netw. Des. Model., 2018, pp. 230–233.
  41. “TIP OOPT OLS YANG models—Opendevice,” Git repository, 2018. [Online]. Available: https://github.com/Telecominfraproject/oopt-open-optical-models
  42. P. Castoldiet al., “Optical white box: Modeling and implementation,” in Proc. 20th Int. Conf. Transp. Opt. Netw., 2018, pp. 1–4.
  43. M. Björklund, “The YANG 1.1 Data Modeling Language,” RFC 7950, 2016. [Online]. Available: https://rfc-editor.org/rfc/rfc7950.txt
  44. RAUC: Safe and secure embedded Linux updates. Project homepage, 2018. [Online]. Available: https://rauc.io/
  45. “Facebook Voyager transponder,” 2016. [Online]. Available: https://code.fb.com/connectivity/an-open-approach-for-switching-routing-and-transport/
  46. H. Zhanget al., “Real-time transmission of 16 Tb/s over 1020 km using 200 Gb/s CFP2-DCO,” Opt. Express, vol. 26, no. 6, pp. 6943–6948, 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-6-6943
  47. T. Horvathet al., “Simultaneous transmission of accurate time, stable frequency, data, and sensor system over one fiber with ITU 100 GHz grid,” Opt. Fiber Technol., vol. 40, pp. 139–143, 2018.
  48. E. Riccardiet al., “An operator view on the introduction of white boxes into optical networks,” J. Lightw. Technol., vol. 36, no. 15, pp. 3062–3072, 2018.
  49. M. Fileret al., “Multi-vendor experimental validation of an open source QoT estimator for optical networks,” J. Lightw. Technol., vol. 36, no. 15, pp. 3073–3082, 2018.
  50. V. Lopezet al., “Transport API: A solution for SDN in carriers networks,” in Proc. 42nd Eur. Conf. Opt. Commun., 2016, pp. 1–3.

2018 (3)

T. Horvathet al., “Simultaneous transmission of accurate time, stable frequency, data, and sensor system over one fiber with ITU 100 GHz grid,” Opt. Fiber Technol., vol. 40, pp. 139–143, 2018.

E. Riccardiet al., “An operator view on the introduction of white boxes into optical networks,” J. Lightw. Technol., vol. 36, no. 15, pp. 3062–3072, 2018.

M. Fileret al., “Multi-vendor experimental validation of an open source QoT estimator for optical networks,” J. Lightw. Technol., vol. 36, no. 15, pp. 3073–3082, 2018.

2017 (2)

J. M. Simmons, “A closer look at ROADM contention,” IEEE Commun. Mag., vol. 55, no. 2, pp. 160–166, 2017.

T. Szyrkowiec, A. Autenrieth, and W. Kellerer, “Optical network models and their application to software-defined network management,” Int. J. Opt., vol. 2017, 2017, Art. no. .

2016 (1)

K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179, 2016.

2013 (1)

B. Collings, “New devices enabling software-defined optical networks,” IEEE Commun. Mag., vol. 51, no. 3, pp. 66–71, 2013.

2012 (1)

Y. Li, L. Gao, G. Shen, and L. Peng, “Impact of ROADM colorless, directionless, and contentionless (CDC) features on optical network performance [invited],” IEEE/OSA J. Opt. Commun. Netw., vol. 4, no. 11, pp. B58–B67, 2012.

2010 (1)

S. Gringeriet al., “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, 2010.

2007 (1)

R. Shankaret al., “Multi-degree ROADM based on wavelength selective switches: Architectures and scalability,” Opt. Commun., vol. 279, no. 1, pp. 94–100, 2007.

1995 (1)

A. E. Willner and S.-M. Hwan, “Transmission of many WDM channels through a cascade of EDFA's in long-distance links and ring networks,” J. Lightw. Technol., vol. 13, no. 5, pp. 802–816, 1995.

Abedifar, V.

V. Abedifaret al., “Design and simulation of a ROADM-based DWDM network,” in Proc. 21st Iranian Conf. Elect. Eng., 2013, pp. 1–4.

Autenrieth, A.

T. Szyrkowiec, A. Autenrieth, and W. Kellerer, “Optical network models and their application to software-defined network management,” Int. J. Opt., vol. 2017, 2017, Art. no. .

Bartur, M.

N. Parkin, M. Bartur, D. Nesset, and D. Jenkins, “Gigabit SFP transceiver with integrated optical time domain reflectometer for ethernet access services,” in Proc. 39th Eur. Conf. Exhib. Opt. Commun., 2013, pp. 1–3.

Becker, P. M.

P. M. Becker, A. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology. Amsterdam, The Netherlands: Elsevier, 1999.

Bierman, A.

R. Enns, M. Björklund, A. Bierman, and J. Schönwälder, “Network Configuration Protocol (NETCONF),” RFC 6241, 2011. [Online]. Available: https://rfc-editor.org/rfc/rfc6241.txt

Björklund, M.

R. Enns, M. Björklund, A. Bierman, and J. Schönwälder, “Network Configuration Protocol (NETCONF),” RFC 6241, 2011. [Online]. Available: https://rfc-editor.org/rfc/rfc6241.txt

M. Björklundet al., “Network Management Datastore Architecture (NMDA),” RFC 8342, 2018. [Online]. Available: https://rfc-editor.org/rfc/rfc8342.txt

M. Björklund, “The YANG 1.1 Data Modeling Language,” RFC 7950, 2016. [Online]. Available: https://rfc-editor.org/rfc/rfc7950.txt

Castoldi, P.

P. Castoldiet al., “Optical white box: Modeling and implementation,” in Proc. 20th Int. Conf. Transp. Opt. Netw., 2018, pp. 1–4.

Collings, B.

B. Collings, “New devices enabling software-defined optical networks,” IEEE Commun. Mag., vol. 51, no. 3, pp. 66–71, 2013.

Collings, B. C.

B. C. Collings, “Advanced ROADM technologies and architectures,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, Paper Tu3D.3.

Enns, R.

R. Enns, M. Björklund, A. Bierman, and J. Schönwälder, “Network Configuration Protocol (NETCONF),” RFC 6241, 2011. [Online]. Available: https://rfc-editor.org/rfc/rfc6241.txt

Filer, M.

M. Fileret al., “Multi-vendor experimental validation of an open source QoT estimator for optical networks,” J. Lightw. Technol., vol. 36, no. 15, pp. 3073–3082, 2018.

M. Fileret al., “Demonstration and performance analysis of 4 Tb/s DWDM metro-DCI system with 100 G PAM4 QSFP28 modules,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, Paper W4D.4.

M. Filer and S. Tibuleac, “N-degree ROADM architecture comparison: Broadcast-and-select versus route-and-select in 120 Gb/s DP-QPSK transmission systems,” in Proc. Opt. Fiber Commun. Conf., 2014, Paper Th1I.2.

Gao, L.

Y. Li, L. Gao, G. Shen, and L. Peng, “Impact of ROADM colorless, directionless, and contentionless (CDC) features on optical network performance [invited],” IEEE/OSA J. Opt. Commun. Netw., vol. 4, no. 11, pp. B58–B67, 2012.

Gringeri, S.

S. Gringeriet al., “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, 2010.

Higuchi, Y.

M. D. Leenheer, Y. Higuchi, and G. Parulkar, “An open controller for the disaggregated optical network,” in Proc. Int. Conf. Opt. Netw. Des. Model., 2018, pp. 230–233.

Horvath, T.

T. Horvathet al., “Simultaneous transmission of accurate time, stable frequency, data, and sensor system over one fiber with ITU 100 GHz grid,” Opt. Fiber Technol., vol. 40, pp. 139–143, 2018.

Hwan, S.-M.

A. E. Willner and S.-M. Hwan, “Transmission of many WDM channels through a cascade of EDFA's in long-distance links and ring networks,” J. Lightw. Technol., vol. 13, no. 5, pp. 802–816, 1995.

Jenkins, D.

N. Parkin, M. Bartur, D. Nesset, and D. Jenkins, “Gigabit SFP transceiver with integrated optical time domain reflectometer for ethernet access services,” in Proc. 39th Eur. Conf. Exhib. Opt. Commun., 2013, pp. 1–3.

Karásek, M.

J. Radil, J. Vojtěch, M. Karásek, and S. Šíma, “Dark fibre networks and how to light them,” in Proc. 4th Quilt Opt. Netw. Workshop, Fort Lauderdale, FL, USA, 2006. [Online]. Available: https://photonics.cesnet.cz/_media/publications/fiber-optics/2006/radil-quilt.pdf

Kellerer, W.

T. Szyrkowiec, A. Autenrieth, and W. Kellerer, “Optical network models and their application to software-defined network management,” Int. J. Opt., vol. 2017, 2017, Art. no. .

Kikuchi, K.

K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179, 2016.

Kundrát, J.

J. Kundrátet al., “YANG/NETCONF ROADM: Evolving open DWDM toward SDN applications,” J. Lightw. Technol., vol. 36, no. 15, pp. 3105–3114, 2018. [Online]. Available: http://jlt.osa.org/abstract.cfm?URI=jlt-36-15-3105

Leemhuis, T.

L. Poettering, K. Sievers, and T. Leemhuis, “Control centre: The systemd Linux init system,” The H Open, 2012. [Online]. Available: http://www.h-online.com/open/features/Control-Centre-The-systemd-Linux-init-system-1565543.html

Leenheer, M. D.

M. D. Leenheer, Y. Higuchi, and G. Parulkar, “An open controller for the disaggregated optical network,” in Proc. Int. Conf. Opt. Netw. Des. Model., 2018, pp. 230–233.

Li, Y.

Y. Li, L. Gao, G. Shen, and L. Peng, “Impact of ROADM colorless, directionless, and contentionless (CDC) features on optical network performance [invited],” IEEE/OSA J. Opt. Commun. Netw., vol. 4, no. 11, pp. B58–B67, 2012.

Liaw, S.-K.

S.-K. Liawet al., “Bidirectional reconfigurable optical add-drop multiplexer with power compensation built-in optical amplifiers,” J. Opt. Netw., vol. 7, no. 7, pp. 662–672, 2008. [Online]. Available:http://jon.osa.org/abstract.cfm?URI=jon-7-7-662

Lopez, V.

V. Lopezet al., “Transport API: A solution for SDN in carriers networks,” in Proc. 42nd Eur. Conf. Opt. Commun., 2016, pp. 1–3.

Ly, K.

K. Ly, Random mating IL vs. IL by master jumper. Whitepaper. SENKO. 2012. [Online]. Available: http://www.senko.com/fiber/pdf_brochure/IL-random-mating-master-jumper.pdf

Morro, R.

R. Morroet al., “Automated end to end carrier ethernet provisioning over a disaggregated WDM metro network with a hierarchical SDN control and monitoring platform,” in Proc. Eur. Conf. Opt. Commun., 2018, pp. 1–3.

Nesset, D.

N. Parkin, M. Bartur, D. Nesset, and D. Jenkins, “Gigabit SFP transceiver with integrated optical time domain reflectometer for ethernet access services,” in Proc. 39th Eur. Conf. Exhib. Opt. Commun., 2013, pp. 1–3.

Olsson, A. A.

P. M. Becker, A. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology. Amsterdam, The Netherlands: Elsevier, 1999.

Parkin, N.

N. Parkin, M. Bartur, D. Nesset, and D. Jenkins, “Gigabit SFP transceiver with integrated optical time domain reflectometer for ethernet access services,” in Proc. 39th Eur. Conf. Exhib. Opt. Commun., 2013, pp. 1–3.

Parulkar, G.

M. D. Leenheer, Y. Higuchi, and G. Parulkar, “An open controller for the disaggregated optical network,” in Proc. Int. Conf. Opt. Netw. Des. Model., 2018, pp. 230–233.

Peng, L.

Y. Li, L. Gao, G. Shen, and L. Peng, “Impact of ROADM colorless, directionless, and contentionless (CDC) features on optical network performance [invited],” IEEE/OSA J. Opt. Commun. Netw., vol. 4, no. 11, pp. B58–B67, 2012.

Petazzoni, T.

T. Petazzoni, “Buildroot: A nice, simple and efficient embedded Linux build system,” in Proc. Embedded Linux Syst. Conf., 2012. [Online]. Available: http://thomas.enix.org/pub/conf/rmll2012/buildroot.pdf

Poettering, L.

L. Poettering, K. Sievers, and T. Leemhuis, “Control centre: The systemd Linux init system,” The H Open, 2012. [Online]. Available: http://www.h-online.com/open/features/Control-Centre-The-systemd-Linux-init-system-1565543.html

Radil, J.

J. Radil, J. Vojtěch, M. Karásek, and S. Šíma, “Dark fibre networks and how to light them,” in Proc. 4th Quilt Opt. Netw. Workshop, Fort Lauderdale, FL, USA, 2006. [Online]. Available: https://photonics.cesnet.cz/_media/publications/fiber-optics/2006/radil-quilt.pdf

Riccardi, E.

E. Riccardiet al., “An operator view on the introduction of white boxes into optical networks,” J. Lightw. Technol., vol. 36, no. 15, pp. 3062–3072, 2018.

Sarmiento, S.

S. Sarmientoet al., “Cost-effective DWDM ROADM design for flexible sustainable optical metro-access networks,” J. Opt. Commun. Netw., vol. 9, no. 12, pp. 1116–1124, 2017. [Online]. Available:http://jocn.osa.org/abstract.cfm?URI=jocn-9-12-1116

Schönwälder, J.

R. Enns, M. Björklund, A. Bierman, and J. Schönwälder, “Network Configuration Protocol (NETCONF),” RFC 6241, 2011. [Online]. Available: https://rfc-editor.org/rfc/rfc6241.txt

Shankar, R.

R. Shankaret al., “Multi-degree ROADM based on wavelength selective switches: Architectures and scalability,” Opt. Commun., vol. 279, no. 1, pp. 94–100, 2007.

Shen, G.

Y. Li, L. Gao, G. Shen, and L. Peng, “Impact of ROADM colorless, directionless, and contentionless (CDC) features on optical network performance [invited],” IEEE/OSA J. Opt. Commun. Netw., vol. 4, no. 11, pp. B58–B67, 2012.

Sievers, K.

L. Poettering, K. Sievers, and T. Leemhuis, “Control centre: The systemd Linux init system,” The H Open, 2012. [Online]. Available: http://www.h-online.com/open/features/Control-Centre-The-systemd-Linux-init-system-1565543.html

Šíma, S.

J. Radil, J. Vojtěch, M. Karásek, and S. Šíma, “Dark fibre networks and how to light them,” in Proc. 4th Quilt Opt. Netw. Workshop, Fort Lauderdale, FL, USA, 2006. [Online]. Available: https://photonics.cesnet.cz/_media/publications/fiber-optics/2006/radil-quilt.pdf

Simmons, J. M.

J. M. Simmons, “A closer look at ROADM contention,” IEEE Commun. Mag., vol. 55, no. 2, pp. 160–166, 2017.

Simpson, J. R.

P. M. Becker, A. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology. Amsterdam, The Netherlands: Elsevier, 1999.

Škoda, P.

P. Škoda and J. Vojtěch, “White paper—Optical reach of photonic services—GÉANT,” 2013. [Online]. Available: https://geant3.archive.geant.org/Media_Centre/Media_Library/Media%20Library/GN3-13-162_MJ1.2.3_White-Paper_Optical-Reach-of-Photonic-Services_v3.pdf

Szyrkowiec, T.

T. Szyrkowiec, A. Autenrieth, and W. Kellerer, “Optical network models and their application to software-defined network management,” Int. J. Opt., vol. 2017, 2017, Art. no. .

Tibuleac, S.

M. Filer and S. Tibuleac, “N-degree ROADM architecture comparison: Broadcast-and-select versus route-and-select in 120 Gb/s DP-QPSK transmission systems,” in Proc. Opt. Fiber Commun. Conf., 2014, Paper Th1I.2.

Velasco, L.

L. Velascoet al., “Learning from the optical spectrum: Soft-failure identification and localization [invited],” in Proc. Opt. Fiber Commun. Conf. Expo., 2018, Paper W1G.1.

Vojtech, J.

P. Škoda and J. Vojtěch, “White paper—Optical reach of photonic services—GÉANT,” 2013. [Online]. Available: https://geant3.archive.geant.org/Media_Centre/Media_Library/Media%20Library/GN3-13-162_MJ1.2.3_White-Paper_Optical-Reach-of-Photonic-Services_v3.pdf

J. Radil, J. Vojtěch, M. Karásek, and S. Šíma, “Dark fibre networks and how to light them,” in Proc. 4th Quilt Opt. Netw. Workshop, Fort Lauderdale, FL, USA, 2006. [Online]. Available: https://photonics.cesnet.cz/_media/publications/fiber-optics/2006/radil-quilt.pdf

Wessing, H.

H. Wessinget al., “Alien wavelengths in national research and education network infrastructures based on open line systems: Challenges and opportunities,” J. Opt. Commun. Netw., vol. 11, no. 3, pp. 118–129, 2019. [Online]. Available: http://jocn.osa.org/abstract.cfm?URI=jocn-11-3-118

Willner, A. E.

A. E. Willner and S.-M. Hwan, “Transmission of many WDM channels through a cascade of EDFA's in long-distance links and ring networks,” J. Lightw. Technol., vol. 13, no. 5, pp. 802–816, 1995.

Zhang, H.

H. Zhanget al., “Real-time transmission of 16 Tb/s over 1020 km using 200 Gb/s CFP2-DCO,” Opt. Express, vol. 26, no. 6, pp. 6943–6948, 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-6-6943

IEEE Commun. Mag. (3)

S. Gringeriet al., “Flexible architectures for optical transport nodes and networks,” IEEE Commun. Mag., vol. 48, no. 7, pp. 40–50, 2010.

B. Collings, “New devices enabling software-defined optical networks,” IEEE Commun. Mag., vol. 51, no. 3, pp. 66–71, 2013.

J. M. Simmons, “A closer look at ROADM contention,” IEEE Commun. Mag., vol. 55, no. 2, pp. 160–166, 2017.

IEEE/OSA J. Opt. Commun. Netw. (1)

Y. Li, L. Gao, G. Shen, and L. Peng, “Impact of ROADM colorless, directionless, and contentionless (CDC) features on optical network performance [invited],” IEEE/OSA J. Opt. Commun. Netw., vol. 4, no. 11, pp. B58–B67, 2012.

Int. J. Opt. (1)

T. Szyrkowiec, A. Autenrieth, and W. Kellerer, “Optical network models and their application to software-defined network management,” Int. J. Opt., vol. 2017, 2017, Art. no. .

J. Lightw. Technol. (4)

K. Kikuchi, “Fundamentals of coherent optical fiber communications,” J. Lightw. Technol., vol. 34, no. 1, pp. 157–179, 2016.

A. E. Willner and S.-M. Hwan, “Transmission of many WDM channels through a cascade of EDFA's in long-distance links and ring networks,” J. Lightw. Technol., vol. 13, no. 5, pp. 802–816, 1995.

E. Riccardiet al., “An operator view on the introduction of white boxes into optical networks,” J. Lightw. Technol., vol. 36, no. 15, pp. 3062–3072, 2018.

M. Fileret al., “Multi-vendor experimental validation of an open source QoT estimator for optical networks,” J. Lightw. Technol., vol. 36, no. 15, pp. 3073–3082, 2018.

Opt. Commun. (1)

R. Shankaret al., “Multi-degree ROADM based on wavelength selective switches: Architectures and scalability,” Opt. Commun., vol. 279, no. 1, pp. 94–100, 2007.

Opt. Fiber Technol. (1)

T. Horvathet al., “Simultaneous transmission of accurate time, stable frequency, data, and sensor system over one fiber with ITU 100 GHz grid,” Opt. Fiber Technol., vol. 40, pp. 139–143, 2018.

Other (39)

V. Lopezet al., “Transport API: A solution for SDN in carriers networks,” in Proc. 42nd Eur. Conf. Opt. Commun., 2016, pp. 1–3.

B. C. Collings, “Advanced ROADM technologies and architectures,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2015, Paper Tu3D.3.

M. Filer and S. Tibuleac, “N-degree ROADM architecture comparison: Broadcast-and-select versus route-and-select in 120 Gb/s DP-QPSK transmission systems,” in Proc. Opt. Fiber Commun. Conf., 2014, Paper Th1I.2.

S.-K. Liawet al., “Bidirectional reconfigurable optical add-drop multiplexer with power compensation built-in optical amplifiers,” J. Opt. Netw., vol. 7, no. 7, pp. 662–672, 2008. [Online]. Available:http://jon.osa.org/abstract.cfm?URI=jon-7-7-662

L. Velascoet al., “Learning from the optical spectrum: Soft-failure identification and localization [invited],” in Proc. Opt. Fiber Commun. Conf. Expo., 2018, Paper W1G.1.

M. Fileret al., “Demonstration and performance analysis of 4 Tb/s DWDM metro-DCI system with 100 G PAM4 QSFP28 modules,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, Paper W4D.4.

H. Wessinget al., “Alien wavelengths in national research and education network infrastructures based on open line systems: Challenges and opportunities,” J. Opt. Commun. Netw., vol. 11, no. 3, pp. 118–129, 2019. [Online]. Available: http://jocn.osa.org/abstract.cfm?URI=jocn-11-3-118

V. Abedifaret al., “Design and simulation of a ROADM-based DWDM network,” in Proc. 21st Iranian Conf. Elect. Eng., 2013, pp. 1–4.

S. Sarmientoet al., “Cost-effective DWDM ROADM design for flexible sustainable optical metro-access networks,” J. Opt. Commun. Netw., vol. 9, no. 12, pp. 1116–1124, 2017. [Online]. Available:http://jocn.osa.org/abstract.cfm?URI=jocn-9-12-1116

P. Škoda and J. Vojtěch, “White paper—Optical reach of photonic services—GÉANT,” 2013. [Online]. Available: https://geant3.archive.geant.org/Media_Centre/Media_Library/Media%20Library/GN3-13-162_MJ1.2.3_White-Paper_Optical-Reach-of-Photonic-Services_v3.pdf

Optical Safety Procedures and Requirements for Optical Transmission Systems, ITU-T Standard G.664, Rev. 10/2012, 2012. [Online]. Available: https://www.itu.int/rec/T-REC-G.664-201210-I/en

“OpenROADM v2 device whitepaper (version 1.1),” 2018. [Online]. Available: https://0201.nccdn.net/1_2/000/000/134/c50/Open-ROADM-MSA-release-2-Dev ice-White-paper-v1-1.pdf

N. Parkin, M. Bartur, D. Nesset, and D. Jenkins, “Gigabit SFP transceiver with integrated optical time domain reflectometer for ethernet access services,” in Proc. 39th Eur. Conf. Exhib. Opt. Commun., 2013, pp. 1–3.

J. Radil, J. Vojtěch, M. Karásek, and S. Šíma, “Dark fibre networks and how to light them,” in Proc. 4th Quilt Opt. Netw. Workshop, Fort Lauderdale, FL, USA, 2006. [Online]. Available: https://photonics.cesnet.cz/_media/publications/fiber-optics/2006/radil-quilt.pdf

J. Kundrátet al., “YANG/NETCONF ROADM: Evolving open DWDM toward SDN applications,” J. Lightw. Technol., vol. 36, no. 15, pp. 3105–3114, 2018. [Online]. Available: http://jlt.osa.org/abstract.cfm?URI=jlt-36-15-3105

R. Enns, M. Björklund, A. Bierman, and J. Schönwälder, “Network Configuration Protocol (NETCONF),” RFC 6241, 2011. [Online]. Available: https://rfc-editor.org/rfc/rfc6241.txt

R. Morroet al., “Automated end to end carrier ethernet provisioning over a disaggregated WDM metro network with a hierarchical SDN control and monitoring platform,” in Proc. Eur. Conf. Opt. Commun., 2018, pp. 1–3.

Tencent trials ADVA FSP 3000 TeraFlex$^{\rm TM}$ 600G DCI technology over its open line system OPC-4. Press release, 2018. [Online]. Available: https://www.advaoptical.com/en/newsroom/press-releases/20181112-tencent-trials-adva-fsp-3000-teraflex-600g-dci-technology-over-its-open-line-system-o pc-4

Spectral Grids for WDM applications: DWDM Frequency Grid, ITU-T Std. G.694.1, Rev. 02/2012, 2012. [Online]. Available: https://www.itu.int/rec/T-REC-G.694.1-201202-I/en

K. Ly, Random mating IL vs. IL by master jumper. Whitepaper. SENKO. 2012. [Online]. Available: http://www.senko.com/fiber/pdf_brochure/IL-random-mating-master-jumper.pdf

P. M. Becker, A. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology. Amsterdam, The Netherlands: Elsevier, 1999.

“Tap PD array with I2C, single-mode—Oplink,” Datasheet, 2018. [Online]. Available: http://www.oplink.com/passive/detail/110.html

“SolidRun ClearFog Base,” 2018. [Online]. Available: https://www.solid-run.com/marvell-armada-family/clearfog/

“LTC4316—Single I2C/SMBus address translator,” Datasheet, 2018. [Online]. Available: https://www.analog.com/media/en/technical-documentation/data-sheets/431 6fa.pdf

“MAX14830 quad serial UART with 128-word FIFOs,” Datasheet, 2018. [Online]. Available: https://www.maximintegrated.com/en/products/interface/controllers-expan ders/MAX14830.html

“Accepted contribution of CESNET to the Linux kernel,” Git repository, 2019. [Online]. Available: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=author&q=jan.kundrat%40cesnet.cz

PMBus$^{\rm TM}$ power management defined. Project homepage, 2010. [Online]. Available: http://pmbus.org/

“ADT7463: Remote thermal controller and voltage monitor,” Datasheet, 2018. [Online]. Available: https://www.onsemi.com/pub/Collateral/ADT7463-D.PDF

sysrepo—YANG-based configuration and operational state data store for Unix/Linux applications. Project homepage, 2019. [Online]. Available: http://www.sysrepo.org/

T. Petazzoni, “Buildroot: A nice, simple and efficient embedded Linux build system,” in Proc. Embedded Linux Syst. Conf., 2012. [Online]. Available: http://thomas.enix.org/pub/conf/rmll2012/buildroot.pdf

L. Poettering, K. Sievers, and T. Leemhuis, “Control centre: The systemd Linux init system,” The H Open, 2012. [Online]. Available: http://www.h-online.com/open/features/Control-Centre-The-systemd-Linux-init-system-1565543.html

M. Björklundet al., “Network Management Datastore Architecture (NMDA),” RFC 8342, 2018. [Online]. Available: https://rfc-editor.org/rfc/rfc8342.txt

M. D. Leenheer, Y. Higuchi, and G. Parulkar, “An open controller for the disaggregated optical network,” in Proc. Int. Conf. Opt. Netw. Des. Model., 2018, pp. 230–233.

“TIP OOPT OLS YANG models—Opendevice,” Git repository, 2018. [Online]. Available: https://github.com/Telecominfraproject/oopt-open-optical-models

P. Castoldiet al., “Optical white box: Modeling and implementation,” in Proc. 20th Int. Conf. Transp. Opt. Netw., 2018, pp. 1–4.

M. Björklund, “The YANG 1.1 Data Modeling Language,” RFC 7950, 2016. [Online]. Available: https://rfc-editor.org/rfc/rfc7950.txt

RAUC: Safe and secure embedded Linux updates. Project homepage, 2018. [Online]. Available: https://rauc.io/

“Facebook Voyager transponder,” 2016. [Online]. Available: https://code.fb.com/connectivity/an-open-approach-for-switching-routing-and-transport/

H. Zhanget al., “Real-time transmission of 16 Tb/s over 1020 km using 200 Gb/s CFP2-DCO,” Opt. Express, vol. 26, no. 6, pp. 6943–6948, 2018. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-26-6-6943

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.