Abstract

A flexible subcarrier multiplexing system combining analog transport with digital domain processing is presented. By making use of bandpass sampling and applying a systematic mapping of signals into available Nyquist zones, the multiplexing system is able to present multiple signals at the same intermediate frequency at the remote site. This simplifies the processing required for multiple antenna systems. We further propose the use of track-and-hold amplifiers at the remote site. These elements are used to extend the mapping to a mapping hierarchy, offering flexibility in frequency placement of signals and relaxation of analog-to-digital converter bandwidth and sampling rate constraints. The system allows the transport of different numerologies in a number of next generation radio access network scenarios. Experimental results for large signal multiplexes with both generic and 5th-generation mobile numerologies show error-vector magnitude performance well within specifications, validating the proposed system. Simulation results from a system model matched to these experimental results provide performance predictions for larger signal multiplexes and larger bandwidths.

PDF Article

References

  • View by:

  1. Common Public Radio Interface (CPRI); Interface Specification, CPRI Specification V7.0, 2015. [Online]. Available: http://www.cpri.info/spec.html. Accessed on: , 2019.
  2. Study on New Radio Access Technology: Radio Access Architecture and Interfaces (Release 14), 3GPP Technical Specification Group Radio Access Network, TR 38.801, V14.0.0, 2017. [Online]. Available: http://www.3gpp.org/DynaReport/38-series.htm. Accessed on: , 2019.
  3. Common Public Radio Interface: eCPRI Interface Specification, eCPRI Specification, V1.0, 2017. [Online]. Available: http://www.cpri.info/spec.html. Accessed on: , 2019.
  4. N. J. Gomes, P. Assimakopoulos, M. K. Al-Hares, U. Habib, and S. Noor, “The new flexible mobile fronthaul: Digital or analog, or both?,” in Proc. Int. Conf. Transparent Opt. Netw., Trento, Italy, 2016, pp. 1–4.
  5. Z. Tayqet al., “Real time demonstration of fronthaul transport over a mix of analogue & digital RoF,” in Proc. Int. Conf. Transparent Opt. Netw., Girona, Spain, 2017, pp. 1–4.
  6. X. Liu, H. Zeng, N. Chard, and F. Effenberger, “Efficient mobile fronthaul via DSP-based channel aggregation,” J. Lightw. Technol., vol. 34, no. 6, pp. 1556–1564, 2016.
  7. C. Browning, A. Gazman, N. Abrams, K. Bergman, and L. P. Barry, “256/64-QAM multicarrier analog radio-over-fiber modulation using a linear differential drive silicon Mach-Zehnder modulator,” in Proc. IEEE Int. Topical Meeting Microw. Photon., Toulouse, France, 2018, pp. 1–4.
  8. R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, “Subcarrier multiplexing for high-speed optical transmission,” J. Lightw. Technol., vol. 20, no. 3, pp. 417–427, 2002.
  9. R. Hui, K. Kaje, and A. Fumagalli, “Digital-analog hybrid SCM for fine-granularity circuit-switched optical networks,” in Proc. Int. Conf. Transparent Opt. Netw., Trento, Italy, 2016, pp. 1–7.
  10. P. Assimakopoulos, A. Nkansah, N. J. Gomes, and D. Wake, “Multi-channel signal transmission through radio over fiber architecture,” in Proc. IEEE Global Commun. Conf., Houston, TX, USA, 2011, pp. 152–156.
  11. C. P. Liu and A. Seeds, “Transmission of wireless MIMO-type signals over a single optical fiber without WDM,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3094–3102, 2010.
  12. Z. Dong, H. Chien, and J. Yu, “Bandwidth-efficient modulation for hybrid 10G/100G optical communication networks,” IEEE Photon. Technol. Lett., vol. 28, no. 4, pp. 469–472, 2016.
  13. P. Torres-Ferrera, S. Straullu, S. Abrate, and R. Gaudino, “Upstream and downstream analysis of an optical fronthaul system based on DSP-assisted channel aggregation,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 12, pp. 1191–1201, 2017.
  14. R. G. Vaughan, N. L. Scott, and D. R. White, “The theory of bandpass sampling,” IEEE Trans. Signal Process., vol. 39, no. 9, pp. 1973–1984, 1991.
  15. L. Cheng, X. Liu, N. Chard, F. Effenberger, and G. Chang, “Experimental demonstration of sub-Nyquist sampling for bandwidth-and-hardware-efficient mobile fronthaul supporting 128x128 MIMO with 100 MHz OFDM signals,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, pp. 1–3.
  16. Y. Yang, C. Lim, and A. Nirmalathas, “A full-duplex digitized RoF system for millimeter-wave OFDM transmission,” in Proc. 38th Eur. Conf. Exhib. Opt. Commun., Amsterdam, The Netherlands, 2012, pp. 1–3.
  17. Y. Yang, C. Lim, and A. Nirmalathas, “Investigation on transport schemes for efficient high-frequency broadband OFDM transmission in fibre-wireless links,” J. Lightw. Technol., vol. 32, no. 2, pp. 267–274, 2014.
  18. K. A. Mekonnen, E. Tangdiongga, and T. Koonen, “High-capacity dynamic indoor all-optical-wireless communication system backed up with millimeter-wave radio techniques,” J. Lightw. Technol., vol. 36, no. 19, pp. 4460–4467, 2018.
  19. J. Vucic, C. Kottke, S. Nerreter, K. Langer, and W. J. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol., vol. 28, no. 24, pp. 3512–3518, 2010.
  20. Y. Yang, C. Lim, and A. Nirmalathas, “Bandwidth Improvement of digitized RoF system using track-and-hold amplifier” in Proc. IEEE Int. Topical Meeting Microw. Photon., Noordwijk, The Netherlands, 2012, pp. 115–118.
  21. Tektronix, “Understanding AWG70000A Series Frequency Response and DAC Performance,” Application Note. 2013. [Online]. Available: https://www.tek.com/document/application-note/understanding-awg70000a-series-frequency-response-and-dac-performance. Accessed on: 2019.
  22. Base Station (BS) radio transmission and reception (Release 15), 3GPP Technical Specification Group Radio Access Network; NR, TS 38.104, V15.0.0. Dec. 2017. [Online]. Available: http://www.3gpp.org/DynaReport/38-series.htm. Accessed on: 2019.
  23. G. Vedala, M. A. Hameed, and R. Hui, “Digital compensation of SSBI in direct detection multicarrier system with SOA nonlinearities,” IEEE Photon. Technol. Lett., vol. 29, no. 4, pp. 369–372, 2017.
  24. M. Xuet al., “Bidirectional fiber-wireless access technology for 5G mobile spectral aggregation and cell densification,” IEEE/OSA J. Opt. Commun. Netw., vol. 8, no. 12, pp. 104–110, 2016.
  25. Analog Devices, “HMC1061LC5 DC – 18 GHz, ultra-wideband, dual rank 4 GS/s track-and-hold amplifier,” Datasheet, 2017. [Online]. Available: http://www.analog.com/media/en/technical-documentation/data-sheets/hmc1061.pdf. Accessed on: 2019.

2018 (1)

K. A. Mekonnen, E. Tangdiongga, and T. Koonen, “High-capacity dynamic indoor all-optical-wireless communication system backed up with millimeter-wave radio techniques,” J. Lightw. Technol., vol. 36, no. 19, pp. 4460–4467, 2018.

2017 (2)

P. Torres-Ferrera, S. Straullu, S. Abrate, and R. Gaudino, “Upstream and downstream analysis of an optical fronthaul system based on DSP-assisted channel aggregation,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 12, pp. 1191–1201, 2017.

G. Vedala, M. A. Hameed, and R. Hui, “Digital compensation of SSBI in direct detection multicarrier system with SOA nonlinearities,” IEEE Photon. Technol. Lett., vol. 29, no. 4, pp. 369–372, 2017.

2016 (3)

M. Xuet al., “Bidirectional fiber-wireless access technology for 5G mobile spectral aggregation and cell densification,” IEEE/OSA J. Opt. Commun. Netw., vol. 8, no. 12, pp. 104–110, 2016.

X. Liu, H. Zeng, N. Chard, and F. Effenberger, “Efficient mobile fronthaul via DSP-based channel aggregation,” J. Lightw. Technol., vol. 34, no. 6, pp. 1556–1564, 2016.

Z. Dong, H. Chien, and J. Yu, “Bandwidth-efficient modulation for hybrid 10G/100G optical communication networks,” IEEE Photon. Technol. Lett., vol. 28, no. 4, pp. 469–472, 2016.

2014 (1)

Y. Yang, C. Lim, and A. Nirmalathas, “Investigation on transport schemes for efficient high-frequency broadband OFDM transmission in fibre-wireless links,” J. Lightw. Technol., vol. 32, no. 2, pp. 267–274, 2014.

2010 (2)

C. P. Liu and A. Seeds, “Transmission of wireless MIMO-type signals over a single optical fiber without WDM,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3094–3102, 2010.

J. Vucic, C. Kottke, S. Nerreter, K. Langer, and W. J. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol., vol. 28, no. 24, pp. 3512–3518, 2010.

2002 (1)

R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, “Subcarrier multiplexing for high-speed optical transmission,” J. Lightw. Technol., vol. 20, no. 3, pp. 417–427, 2002.

1991 (1)

R. G. Vaughan, N. L. Scott, and D. R. White, “The theory of bandpass sampling,” IEEE Trans. Signal Process., vol. 39, no. 9, pp. 1973–1984, 1991.

Abrams, N.

C. Browning, A. Gazman, N. Abrams, K. Bergman, and L. P. Barry, “256/64-QAM multicarrier analog radio-over-fiber modulation using a linear differential drive silicon Mach-Zehnder modulator,” in Proc. IEEE Int. Topical Meeting Microw. Photon., Toulouse, France, 2018, pp. 1–4.

Abrate, S.

P. Torres-Ferrera, S. Straullu, S. Abrate, and R. Gaudino, “Upstream and downstream analysis of an optical fronthaul system based on DSP-assisted channel aggregation,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 12, pp. 1191–1201, 2017.

Al-Hares, M. K.

N. J. Gomes, P. Assimakopoulos, M. K. Al-Hares, U. Habib, and S. Noor, “The new flexible mobile fronthaul: Digital or analog, or both?,” in Proc. Int. Conf. Transparent Opt. Netw., Trento, Italy, 2016, pp. 1–4.

Allen, C. T.

R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, “Subcarrier multiplexing for high-speed optical transmission,” J. Lightw. Technol., vol. 20, no. 3, pp. 417–427, 2002.

Assimakopoulos, P.

P. Assimakopoulos, A. Nkansah, N. J. Gomes, and D. Wake, “Multi-channel signal transmission through radio over fiber architecture,” in Proc. IEEE Global Commun. Conf., Houston, TX, USA, 2011, pp. 152–156.

N. J. Gomes, P. Assimakopoulos, M. K. Al-Hares, U. Habib, and S. Noor, “The new flexible mobile fronthaul: Digital or analog, or both?,” in Proc. Int. Conf. Transparent Opt. Netw., Trento, Italy, 2016, pp. 1–4.

Barry, L. P.

C. Browning, A. Gazman, N. Abrams, K. Bergman, and L. P. Barry, “256/64-QAM multicarrier analog radio-over-fiber modulation using a linear differential drive silicon Mach-Zehnder modulator,” in Proc. IEEE Int. Topical Meeting Microw. Photon., Toulouse, France, 2018, pp. 1–4.

Bergman, K.

C. Browning, A. Gazman, N. Abrams, K. Bergman, and L. P. Barry, “256/64-QAM multicarrier analog radio-over-fiber modulation using a linear differential drive silicon Mach-Zehnder modulator,” in Proc. IEEE Int. Topical Meeting Microw. Photon., Toulouse, France, 2018, pp. 1–4.

Browning, C.

C. Browning, A. Gazman, N. Abrams, K. Bergman, and L. P. Barry, “256/64-QAM multicarrier analog radio-over-fiber modulation using a linear differential drive silicon Mach-Zehnder modulator,” in Proc. IEEE Int. Topical Meeting Microw. Photon., Toulouse, France, 2018, pp. 1–4.

Chang, G.

L. Cheng, X. Liu, N. Chard, F. Effenberger, and G. Chang, “Experimental demonstration of sub-Nyquist sampling for bandwidth-and-hardware-efficient mobile fronthaul supporting 128x128 MIMO with 100 MHz OFDM signals,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, pp. 1–3.

Chard, N.

X. Liu, H. Zeng, N. Chard, and F. Effenberger, “Efficient mobile fronthaul via DSP-based channel aggregation,” J. Lightw. Technol., vol. 34, no. 6, pp. 1556–1564, 2016.

L. Cheng, X. Liu, N. Chard, F. Effenberger, and G. Chang, “Experimental demonstration of sub-Nyquist sampling for bandwidth-and-hardware-efficient mobile fronthaul supporting 128x128 MIMO with 100 MHz OFDM signals,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, pp. 1–3.

Cheng, L.

L. Cheng, X. Liu, N. Chard, F. Effenberger, and G. Chang, “Experimental demonstration of sub-Nyquist sampling for bandwidth-and-hardware-efficient mobile fronthaul supporting 128x128 MIMO with 100 MHz OFDM signals,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, pp. 1–3.

Chien, H.

Z. Dong, H. Chien, and J. Yu, “Bandwidth-efficient modulation for hybrid 10G/100G optical communication networks,” IEEE Photon. Technol. Lett., vol. 28, no. 4, pp. 469–472, 2016.

Demarest, K. R.

R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, “Subcarrier multiplexing for high-speed optical transmission,” J. Lightw. Technol., vol. 20, no. 3, pp. 417–427, 2002.

Dong, Z.

Z. Dong, H. Chien, and J. Yu, “Bandwidth-efficient modulation for hybrid 10G/100G optical communication networks,” IEEE Photon. Technol. Lett., vol. 28, no. 4, pp. 469–472, 2016.

Effenberger, F.

X. Liu, H. Zeng, N. Chard, and F. Effenberger, “Efficient mobile fronthaul via DSP-based channel aggregation,” J. Lightw. Technol., vol. 34, no. 6, pp. 1556–1564, 2016.

L. Cheng, X. Liu, N. Chard, F. Effenberger, and G. Chang, “Experimental demonstration of sub-Nyquist sampling for bandwidth-and-hardware-efficient mobile fronthaul supporting 128x128 MIMO with 100 MHz OFDM signals,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, pp. 1–3.

Fumagalli, A.

R. Hui, K. Kaje, and A. Fumagalli, “Digital-analog hybrid SCM for fine-granularity circuit-switched optical networks,” in Proc. Int. Conf. Transparent Opt. Netw., Trento, Italy, 2016, pp. 1–7.

Gaudino, R.

P. Torres-Ferrera, S. Straullu, S. Abrate, and R. Gaudino, “Upstream and downstream analysis of an optical fronthaul system based on DSP-assisted channel aggregation,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 12, pp. 1191–1201, 2017.

Gazman, A.

C. Browning, A. Gazman, N. Abrams, K. Bergman, and L. P. Barry, “256/64-QAM multicarrier analog radio-over-fiber modulation using a linear differential drive silicon Mach-Zehnder modulator,” in Proc. IEEE Int. Topical Meeting Microw. Photon., Toulouse, France, 2018, pp. 1–4.

Gomes, N. J.

N. J. Gomes, P. Assimakopoulos, M. K. Al-Hares, U. Habib, and S. Noor, “The new flexible mobile fronthaul: Digital or analog, or both?,” in Proc. Int. Conf. Transparent Opt. Netw., Trento, Italy, 2016, pp. 1–4.

P. Assimakopoulos, A. Nkansah, N. J. Gomes, and D. Wake, “Multi-channel signal transmission through radio over fiber architecture,” in Proc. IEEE Global Commun. Conf., Houston, TX, USA, 2011, pp. 152–156.

Habib, U.

N. J. Gomes, P. Assimakopoulos, M. K. Al-Hares, U. Habib, and S. Noor, “The new flexible mobile fronthaul: Digital or analog, or both?,” in Proc. Int. Conf. Transparent Opt. Netw., Trento, Italy, 2016, pp. 1–4.

Hameed, M. A.

G. Vedala, M. A. Hameed, and R. Hui, “Digital compensation of SSBI in direct detection multicarrier system with SOA nonlinearities,” IEEE Photon. Technol. Lett., vol. 29, no. 4, pp. 369–372, 2017.

Huang, R.

R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, “Subcarrier multiplexing for high-speed optical transmission,” J. Lightw. Technol., vol. 20, no. 3, pp. 417–427, 2002.

Hui, R.

G. Vedala, M. A. Hameed, and R. Hui, “Digital compensation of SSBI in direct detection multicarrier system with SOA nonlinearities,” IEEE Photon. Technol. Lett., vol. 29, no. 4, pp. 369–372, 2017.

R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, “Subcarrier multiplexing for high-speed optical transmission,” J. Lightw. Technol., vol. 20, no. 3, pp. 417–427, 2002.

R. Hui, K. Kaje, and A. Fumagalli, “Digital-analog hybrid SCM for fine-granularity circuit-switched optical networks,” in Proc. Int. Conf. Transparent Opt. Netw., Trento, Italy, 2016, pp. 1–7.

Kaje, K.

R. Hui, K. Kaje, and A. Fumagalli, “Digital-analog hybrid SCM for fine-granularity circuit-switched optical networks,” in Proc. Int. Conf. Transparent Opt. Netw., Trento, Italy, 2016, pp. 1–7.

Koonen, T.

K. A. Mekonnen, E. Tangdiongga, and T. Koonen, “High-capacity dynamic indoor all-optical-wireless communication system backed up with millimeter-wave radio techniques,” J. Lightw. Technol., vol. 36, no. 19, pp. 4460–4467, 2018.

Kottke, C.

J. Vucic, C. Kottke, S. Nerreter, K. Langer, and W. J. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol., vol. 28, no. 24, pp. 3512–3518, 2010.

Langer, K.

J. Vucic, C. Kottke, S. Nerreter, K. Langer, and W. J. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol., vol. 28, no. 24, pp. 3512–3518, 2010.

Lim, C.

Y. Yang, C. Lim, and A. Nirmalathas, “Investigation on transport schemes for efficient high-frequency broadband OFDM transmission in fibre-wireless links,” J. Lightw. Technol., vol. 32, no. 2, pp. 267–274, 2014.

Y. Yang, C. Lim, and A. Nirmalathas, “A full-duplex digitized RoF system for millimeter-wave OFDM transmission,” in Proc. 38th Eur. Conf. Exhib. Opt. Commun., Amsterdam, The Netherlands, 2012, pp. 1–3.

Y. Yang, C. Lim, and A. Nirmalathas, “Bandwidth Improvement of digitized RoF system using track-and-hold amplifier” in Proc. IEEE Int. Topical Meeting Microw. Photon., Noordwijk, The Netherlands, 2012, pp. 115–118.

Liu, C. P.

C. P. Liu and A. Seeds, “Transmission of wireless MIMO-type signals over a single optical fiber without WDM,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3094–3102, 2010.

Liu, X.

X. Liu, H. Zeng, N. Chard, and F. Effenberger, “Efficient mobile fronthaul via DSP-based channel aggregation,” J. Lightw. Technol., vol. 34, no. 6, pp. 1556–1564, 2016.

L. Cheng, X. Liu, N. Chard, F. Effenberger, and G. Chang, “Experimental demonstration of sub-Nyquist sampling for bandwidth-and-hardware-efficient mobile fronthaul supporting 128x128 MIMO with 100 MHz OFDM signals,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, pp. 1–3.

Mekonnen, K. A.

K. A. Mekonnen, E. Tangdiongga, and T. Koonen, “High-capacity dynamic indoor all-optical-wireless communication system backed up with millimeter-wave radio techniques,” J. Lightw. Technol., vol. 36, no. 19, pp. 4460–4467, 2018.

Nerreter, S.

J. Vucic, C. Kottke, S. Nerreter, K. Langer, and W. J. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol., vol. 28, no. 24, pp. 3512–3518, 2010.

Nirmalathas, A.

Y. Yang, C. Lim, and A. Nirmalathas, “Investigation on transport schemes for efficient high-frequency broadband OFDM transmission in fibre-wireless links,” J. Lightw. Technol., vol. 32, no. 2, pp. 267–274, 2014.

Y. Yang, C. Lim, and A. Nirmalathas, “A full-duplex digitized RoF system for millimeter-wave OFDM transmission,” in Proc. 38th Eur. Conf. Exhib. Opt. Commun., Amsterdam, The Netherlands, 2012, pp. 1–3.

Y. Yang, C. Lim, and A. Nirmalathas, “Bandwidth Improvement of digitized RoF system using track-and-hold amplifier” in Proc. IEEE Int. Topical Meeting Microw. Photon., Noordwijk, The Netherlands, 2012, pp. 115–118.

Nkansah, A.

P. Assimakopoulos, A. Nkansah, N. J. Gomes, and D. Wake, “Multi-channel signal transmission through radio over fiber architecture,” in Proc. IEEE Global Commun. Conf., Houston, TX, USA, 2011, pp. 152–156.

Noor, S.

N. J. Gomes, P. Assimakopoulos, M. K. Al-Hares, U. Habib, and S. Noor, “The new flexible mobile fronthaul: Digital or analog, or both?,” in Proc. Int. Conf. Transparent Opt. Netw., Trento, Italy, 2016, pp. 1–4.

Richards, D.

R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, “Subcarrier multiplexing for high-speed optical transmission,” J. Lightw. Technol., vol. 20, no. 3, pp. 417–427, 2002.

Scott, N. L.

R. G. Vaughan, N. L. Scott, and D. R. White, “The theory of bandpass sampling,” IEEE Trans. Signal Process., vol. 39, no. 9, pp. 1973–1984, 1991.

Seeds, A.

C. P. Liu and A. Seeds, “Transmission of wireless MIMO-type signals over a single optical fiber without WDM,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3094–3102, 2010.

Straullu, S.

P. Torres-Ferrera, S. Straullu, S. Abrate, and R. Gaudino, “Upstream and downstream analysis of an optical fronthaul system based on DSP-assisted channel aggregation,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 12, pp. 1191–1201, 2017.

Tangdiongga, E.

K. A. Mekonnen, E. Tangdiongga, and T. Koonen, “High-capacity dynamic indoor all-optical-wireless communication system backed up with millimeter-wave radio techniques,” J. Lightw. Technol., vol. 36, no. 19, pp. 4460–4467, 2018.

Tayq, Z.

Z. Tayqet al., “Real time demonstration of fronthaul transport over a mix of analogue & digital RoF,” in Proc. Int. Conf. Transparent Opt. Netw., Girona, Spain, 2017, pp. 1–4.

Torres-Ferrera, P.

P. Torres-Ferrera, S. Straullu, S. Abrate, and R. Gaudino, “Upstream and downstream analysis of an optical fronthaul system based on DSP-assisted channel aggregation,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 12, pp. 1191–1201, 2017.

Vaughan, R. G.

R. G. Vaughan, N. L. Scott, and D. R. White, “The theory of bandpass sampling,” IEEE Trans. Signal Process., vol. 39, no. 9, pp. 1973–1984, 1991.

Vedala, G.

G. Vedala, M. A. Hameed, and R. Hui, “Digital compensation of SSBI in direct detection multicarrier system with SOA nonlinearities,” IEEE Photon. Technol. Lett., vol. 29, no. 4, pp. 369–372, 2017.

Vucic, J.

J. Vucic, C. Kottke, S. Nerreter, K. Langer, and W. J. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol., vol. 28, no. 24, pp. 3512–3518, 2010.

Wake, D.

P. Assimakopoulos, A. Nkansah, N. J. Gomes, and D. Wake, “Multi-channel signal transmission through radio over fiber architecture,” in Proc. IEEE Global Commun. Conf., Houston, TX, USA, 2011, pp. 152–156.

Walewski, W. J.

J. Vucic, C. Kottke, S. Nerreter, K. Langer, and W. J. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol., vol. 28, no. 24, pp. 3512–3518, 2010.

White, D. R.

R. G. Vaughan, N. L. Scott, and D. R. White, “The theory of bandpass sampling,” IEEE Trans. Signal Process., vol. 39, no. 9, pp. 1973–1984, 1991.

Xu, M.

M. Xuet al., “Bidirectional fiber-wireless access technology for 5G mobile spectral aggregation and cell densification,” IEEE/OSA J. Opt. Commun. Netw., vol. 8, no. 12, pp. 104–110, 2016.

Yang, Y.

Y. Yang, C. Lim, and A. Nirmalathas, “Investigation on transport schemes for efficient high-frequency broadband OFDM transmission in fibre-wireless links,” J. Lightw. Technol., vol. 32, no. 2, pp. 267–274, 2014.

Y. Yang, C. Lim, and A. Nirmalathas, “A full-duplex digitized RoF system for millimeter-wave OFDM transmission,” in Proc. 38th Eur. Conf. Exhib. Opt. Commun., Amsterdam, The Netherlands, 2012, pp. 1–3.

Y. Yang, C. Lim, and A. Nirmalathas, “Bandwidth Improvement of digitized RoF system using track-and-hold amplifier” in Proc. IEEE Int. Topical Meeting Microw. Photon., Noordwijk, The Netherlands, 2012, pp. 115–118.

Yu, J.

Z. Dong, H. Chien, and J. Yu, “Bandwidth-efficient modulation for hybrid 10G/100G optical communication networks,” IEEE Photon. Technol. Lett., vol. 28, no. 4, pp. 469–472, 2016.

Zeng, H.

X. Liu, H. Zeng, N. Chard, and F. Effenberger, “Efficient mobile fronthaul via DSP-based channel aggregation,” J. Lightw. Technol., vol. 34, no. 6, pp. 1556–1564, 2016.

Zhu, B.

R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, “Subcarrier multiplexing for high-speed optical transmission,” J. Lightw. Technol., vol. 20, no. 3, pp. 417–427, 2002.

IEEE Photon. Technol. Lett. (2)

Z. Dong, H. Chien, and J. Yu, “Bandwidth-efficient modulation for hybrid 10G/100G optical communication networks,” IEEE Photon. Technol. Lett., vol. 28, no. 4, pp. 469–472, 2016.

G. Vedala, M. A. Hameed, and R. Hui, “Digital compensation of SSBI in direct detection multicarrier system with SOA nonlinearities,” IEEE Photon. Technol. Lett., vol. 29, no. 4, pp. 369–372, 2017.

IEEE Trans. Microw. Theory Techn. (1)

C. P. Liu and A. Seeds, “Transmission of wireless MIMO-type signals over a single optical fiber without WDM,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 3094–3102, 2010.

IEEE Trans. Signal Process. (1)

R. G. Vaughan, N. L. Scott, and D. R. White, “The theory of bandpass sampling,” IEEE Trans. Signal Process., vol. 39, no. 9, pp. 1973–1984, 1991.

IEEE/OSA J. Opt. Commun. Netw. (2)

P. Torres-Ferrera, S. Straullu, S. Abrate, and R. Gaudino, “Upstream and downstream analysis of an optical fronthaul system based on DSP-assisted channel aggregation,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 12, pp. 1191–1201, 2017.

M. Xuet al., “Bidirectional fiber-wireless access technology for 5G mobile spectral aggregation and cell densification,” IEEE/OSA J. Opt. Commun. Netw., vol. 8, no. 12, pp. 104–110, 2016.

J. Lightw. Technol. (5)

Y. Yang, C. Lim, and A. Nirmalathas, “Investigation on transport schemes for efficient high-frequency broadband OFDM transmission in fibre-wireless links,” J. Lightw. Technol., vol. 32, no. 2, pp. 267–274, 2014.

K. A. Mekonnen, E. Tangdiongga, and T. Koonen, “High-capacity dynamic indoor all-optical-wireless communication system backed up with millimeter-wave radio techniques,” J. Lightw. Technol., vol. 36, no. 19, pp. 4460–4467, 2018.

J. Vucic, C. Kottke, S. Nerreter, K. Langer, and W. J. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightw. Technol., vol. 28, no. 24, pp. 3512–3518, 2010.

X. Liu, H. Zeng, N. Chard, and F. Effenberger, “Efficient mobile fronthaul via DSP-based channel aggregation,” J. Lightw. Technol., vol. 34, no. 6, pp. 1556–1564, 2016.

R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, “Subcarrier multiplexing for high-speed optical transmission,” J. Lightw. Technol., vol. 20, no. 3, pp. 417–427, 2002.

Other (14)

R. Hui, K. Kaje, and A. Fumagalli, “Digital-analog hybrid SCM for fine-granularity circuit-switched optical networks,” in Proc. Int. Conf. Transparent Opt. Netw., Trento, Italy, 2016, pp. 1–7.

P. Assimakopoulos, A. Nkansah, N. J. Gomes, and D. Wake, “Multi-channel signal transmission through radio over fiber architecture,” in Proc. IEEE Global Commun. Conf., Houston, TX, USA, 2011, pp. 152–156.

C. Browning, A. Gazman, N. Abrams, K. Bergman, and L. P. Barry, “256/64-QAM multicarrier analog radio-over-fiber modulation using a linear differential drive silicon Mach-Zehnder modulator,” in Proc. IEEE Int. Topical Meeting Microw. Photon., Toulouse, France, 2018, pp. 1–4.

Common Public Radio Interface (CPRI); Interface Specification, CPRI Specification V7.0, 2015. [Online]. Available: http://www.cpri.info/spec.html. Accessed on: , 2019.

Study on New Radio Access Technology: Radio Access Architecture and Interfaces (Release 14), 3GPP Technical Specification Group Radio Access Network, TR 38.801, V14.0.0, 2017. [Online]. Available: http://www.3gpp.org/DynaReport/38-series.htm. Accessed on: , 2019.

Common Public Radio Interface: eCPRI Interface Specification, eCPRI Specification, V1.0, 2017. [Online]. Available: http://www.cpri.info/spec.html. Accessed on: , 2019.

N. J. Gomes, P. Assimakopoulos, M. K. Al-Hares, U. Habib, and S. Noor, “The new flexible mobile fronthaul: Digital or analog, or both?,” in Proc. Int. Conf. Transparent Opt. Netw., Trento, Italy, 2016, pp. 1–4.

Z. Tayqet al., “Real time demonstration of fronthaul transport over a mix of analogue & digital RoF,” in Proc. Int. Conf. Transparent Opt. Netw., Girona, Spain, 2017, pp. 1–4.

Y. Yang, C. Lim, and A. Nirmalathas, “Bandwidth Improvement of digitized RoF system using track-and-hold amplifier” in Proc. IEEE Int. Topical Meeting Microw. Photon., Noordwijk, The Netherlands, 2012, pp. 115–118.

Tektronix, “Understanding AWG70000A Series Frequency Response and DAC Performance,” Application Note. 2013. [Online]. Available: https://www.tek.com/document/application-note/understanding-awg70000a-series-frequency-response-and-dac-performance. Accessed on: 2019.

Base Station (BS) radio transmission and reception (Release 15), 3GPP Technical Specification Group Radio Access Network; NR, TS 38.104, V15.0.0. Dec. 2017. [Online]. Available: http://www.3gpp.org/DynaReport/38-series.htm. Accessed on: 2019.

L. Cheng, X. Liu, N. Chard, F. Effenberger, and G. Chang, “Experimental demonstration of sub-Nyquist sampling for bandwidth-and-hardware-efficient mobile fronthaul supporting 128x128 MIMO with 100 MHz OFDM signals,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, pp. 1–3.

Y. Yang, C. Lim, and A. Nirmalathas, “A full-duplex digitized RoF system for millimeter-wave OFDM transmission,” in Proc. 38th Eur. Conf. Exhib. Opt. Commun., Amsterdam, The Netherlands, 2012, pp. 1–3.

Analog Devices, “HMC1061LC5 DC – 18 GHz, ultra-wideband, dual rank 4 GS/s track-and-hold amplifier,” Datasheet, 2017. [Online]. Available: http://www.analog.com/media/en/technical-documentation/data-sheets/hmc1061.pdf. Accessed on: 2019.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.