Abstract

There is increasing interest in low-complexity coherent optical transceivers for the use in short-reach fiber links. Amongst the simplest configurations is the heterodyne coherent receiver, using a 3-dB coupler to combine the signal with the local oscillator (LO) laser output, and a single photodiode for detection of each polarization. In this paper, through numerical simulations, we investigate the impact of signal–signal beating interference (SSBI) and LO relative intensity noise (RIN) on the performance of such coherent transceivers. We assess the performance of two methods to mitigate the SSBI: first, the use of high LO laser power, and second, the application of digital signal processing-based receiver linearization, specifically, the Kramers–Kronig (KK) scheme. The results indicate that, in the case of a RIN-free LO laser, a strong LO is effective in mitigating SSBI and achieves a similar performance to that of the KK algorithm. However, the required increase in LO-to-signal power ratio (LOSPR) is significant. For example, a 20 dB higher optimum LOSPR was observed in the 28 Gbaud dual polarization 16 QAM system at an optical signal-to-noise power ratio of 22 dB. The drawback of using such a high LOSPR is the increased penalty due to RIN-LO beating terms, which we next investigated. The lower optimum LOSPR and, consequently, the lower impact of LO RIN on the performance of the KK receiver lead to a reduction in the pre-FEC BER by over an order of magnitude for LO RIN levels above −140 dBc/Hz.

© 2019 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Cisco, “Cisco visual networking index: Forecast and methodology 2016-2021,” White paper, 2017.
  2. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express, vol. 16, no. 2, pp. 753–791, 2008.
  3. X. Li, Z. Dong, J. Yu, J. Yu, and N. Chi, “Heterodyne coherent detection of WDM PDM-QPSK signals with spectral efficiency of 4 b/s/Hz,” Opt. Express, vol. 21, no. 7, pp. 8808–8814, 2013.
  4. T. M. Hoanget al., “Transmission of 344 Gb/s 16-QAM using a simplified coherent receiver based on single-ended detection,” IEEE Photon. J., vol. 8, no. 3, pp. 1–8, 2016, Art. no. .
  5. R. Elschneret al., “Experimental demonstration of a format-flexible single-carrier coherent receiver using data-aided digital signal processing,” Opt. Express, vol. 20, no. 26, pp. 28786–28791, 2012.
  6. A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers–Kronig coherent receiver,” Optica, vol. 3, no. 11, pp. 1220–1227, 2016.
  7. C. Antonelli, A. Mecozzi, M. Shtaif, X. Chen, S. Chandrasekhar, and P. J. Winzer, “Polarization multiplexing with the Kramers–Kronig receiver,” J. Lightw. Technol., vol. 35, no. 24, pp. 5418–5424, Dec. 2017.
  8. A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightw. Technol., vol. 25, no. 1, pp. 131–138, Jan. 2007.
  9. Z. Liet al., “SSBI mitigation and the Kramers–Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightw. Technol., vol. 35, no. 10, pp. 1887–1893, May 2017.
  10. X. Chenet al., “218-Gb/s single-wavelength, single-polarization, single-photodiode transmission over 125-km of standard singlemode fiber using Kramers–Kronig detection,” in Proc. Opt. Fiber Commun. Conf., 2017, pp. 1–3.
  11. Z. Liet al., “Spectrally efficient 168 Gb/s/λ WDM 64-QAM single-sideband nyquist-subcarrier modulation with Kramers–Kronig direct-detection receivers,” J. Lightw. Technol., vol. 36, no. 6, pp. 1340–1346, Mar. 2018.
  12. Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “Single carrier 400G transmission with single-ended heterodyne detection,” IEEE Photon. Technol. Lett., vol. 29, no. 21, pp. 1788–1791, 2017.
  13. S. T. Leet al., “8 × 256 Gbps virtual-carrier assisted WDM direct-detection transmission over a single span of 200 km,” in Proc. Eur. Conf. Opt. Commun., 2017, pp. 1–3.
  14. S. Fanet al., “Twin-SSB direct detection transmission over 80 km SSMF using Kramers–Kronig receiver,” in Proc. Eur. Conf. Opt. Commun., 2017, pp. 1–3.
  15. T. Bo and H. Kim, “Kramers–Kronig receiver operable without digital upsampling,” Opt. Express, vol. 26, no. 11, pp. 13810–13818, 2018.
  16. X. Chenet al., “4 × 240 Gb/s dense WDM and PDM Kramers–Kronig detection with 125-km SSMF transmission,” in Proc. Eur. Conf. Opt. Commun., 2017, no. 1, pp. 1–3.
  17. B. Corcoran, B. Foo, and A. J. Lowery, “Single-photodiode per polarization receiver with signal-signal beat interference suppression through heterodyne detection,” Opt. Express, vol. 26, no. 3, pp. 3075–3086, 2018.
  18. M. Seimetz, “High-order modulation for optical fiber transmission,” Berlin, Germany: Springer-Verlag, 2009, ch. 2, sec. 2.1.1, pp. 15–17.
  19. [Online]. Available: http://nolatech.ru/files/datasheet/DFB-1550-14BF.pdf. Accessed on: , 2019.
  20. [Online]. Available: https://media.digikey.com/pdf/Data%20Sheets/Avago%20PDFs/D2547P.pdf. Accessed on: , 2019.
  21. [Online]. Available: https://www.furukawa.co.jp/fitel/english/active/pdf/signal/ODC-7R001G_FRL15DCWx-A8x-xxxxx-x.pdf. Accessed on: , 2019.
  22. G. P. Agrawal and N. K. Dutta, “Semiconductor lasers,” 3rd ed.Norwell, MA, USA: Kluwer, 1993, ch. 6, sec. 5, pp. 261–269.
  23. J. Senior, “Optical fiber communications: Principles and practice,” 3rd ed.Englewood Cliffs, NJ, USA: Prentice-Hall, 2009, ch. 6, sec. 6.7.4, pp. 356–360.
  24. M. S. Faruk and S. J. Savory, “Digital signal processing for coherent transceivers employing multilevel formats,” J. Lightw. Technol., vol. 35, no. 5, pp. 1125–1141, Mar. 2017.
  25. B. Zhang, C. Malouin, and T. J. Schmidt, “Design of coherent receiver optical front end for unamplified applications,” Opt. Express, vol. 20, no. 3, pp. 3225–3234, 2012.
  26. Z. Liet al., “Joint optimisation of resampling rate and carrier-to-signal power ratio in direct-detection Kramers–Kronig receivers,” in Proc. Eur. Conf. Opt. Commun., 2017, pp. 1–3.
  27. [Online]. Available: http://www.amonics.com/product/44. Accessed on: , 2019.
  28. [Online]. Available: https://www.toptica.com/products/wavemeters-laser-diodes/laser-diodes/dfbdbr/. Accessed on: , 2019.
  29. C. Xie, “Local oscillator phase noise induced penalties in optical coherent detection systems using electronic chromatic dispersion compensation,” in Proc. Opt. Fiber Commun. Conf. Nat. Fiber Opt. Eng. Conf., 2009, pp. 1–3.
  30. T. Xu, G. Jacobsen, S. Popov, T. Liu, Y. Zhang, and P. Bayvel, “Analytical estimation in differential optical transmission systems influenced by equalization enhanced phase noise,” in Proc. PIERS 2016 Prog. Electromagn. Res. Symp., 2016, pp. 4844–4848.

2018 (3)

2017 (5)

Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “Single carrier 400G transmission with single-ended heterodyne detection,” IEEE Photon. Technol. Lett., vol. 29, no. 21, pp. 1788–1791, 2017.

Z. Liet al., “SSBI mitigation and the Kramers–Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightw. Technol., vol. 35, no. 10, pp. 1887–1893, May 2017.

M. S. Faruk and S. J. Savory, “Digital signal processing for coherent transceivers employing multilevel formats,” J. Lightw. Technol., vol. 35, no. 5, pp. 1125–1141, Mar. 2017.

Cisco, “Cisco visual networking index: Forecast and methodology 2016-2021,” White paper, 2017.

C. Antonelli, A. Mecozzi, M. Shtaif, X. Chen, S. Chandrasekhar, and P. J. Winzer, “Polarization multiplexing with the Kramers–Kronig receiver,” J. Lightw. Technol., vol. 35, no. 24, pp. 5418–5424, Dec. 2017.

2016 (2)

A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers–Kronig coherent receiver,” Optica, vol. 3, no. 11, pp. 1220–1227, 2016.

T. M. Hoanget al., “Transmission of 344 Gb/s 16-QAM using a simplified coherent receiver based on single-ended detection,” IEEE Photon. J., vol. 8, no. 3, pp. 1–8, 2016, Art. no. .

2013 (1)

2012 (2)

2008 (1)

2007 (1)

A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightw. Technol., vol. 25, no. 1, pp. 131–138, Jan. 2007.

Agrawal, G. P.

G. P. Agrawal and N. K. Dutta, “Semiconductor lasers,” 3rd ed.Norwell, MA, USA: Kluwer, 1993, ch. 6, sec. 5, pp. 261–269.

Antonelli, C.

C. Antonelli, A. Mecozzi, M. Shtaif, X. Chen, S. Chandrasekhar, and P. J. Winzer, “Polarization multiplexing with the Kramers–Kronig receiver,” J. Lightw. Technol., vol. 35, no. 24, pp. 5418–5424, Dec. 2017.

A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers–Kronig coherent receiver,” Optica, vol. 3, no. 11, pp. 1220–1227, 2016.

Armstrong, J.

A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightw. Technol., vol. 25, no. 1, pp. 131–138, Jan. 2007.

Barros, D. J. F.

Bayvel, P.

T. Xu, G. Jacobsen, S. Popov, T. Liu, Y. Zhang, and P. Bayvel, “Analytical estimation in differential optical transmission systems influenced by equalization enhanced phase noise,” in Proc. PIERS 2016 Prog. Electromagn. Res. Symp., 2016, pp. 4844–4848.

Bo, T.

Chandrasekhar, S.

C. Antonelli, A. Mecozzi, M. Shtaif, X. Chen, S. Chandrasekhar, and P. J. Winzer, “Polarization multiplexing with the Kramers–Kronig receiver,” J. Lightw. Technol., vol. 35, no. 24, pp. 5418–5424, Dec. 2017.

Chen, X.

C. Antonelli, A. Mecozzi, M. Shtaif, X. Chen, S. Chandrasekhar, and P. J. Winzer, “Polarization multiplexing with the Kramers–Kronig receiver,” J. Lightw. Technol., vol. 35, no. 24, pp. 5418–5424, Dec. 2017.

X. Chenet al., “218-Gb/s single-wavelength, single-polarization, single-photodiode transmission over 125-km of standard singlemode fiber using Kramers–Kronig detection,” in Proc. Opt. Fiber Commun. Conf., 2017, pp. 1–3.

X. Chenet al., “4 × 240 Gb/s dense WDM and PDM Kramers–Kronig detection with 125-km SSMF transmission,” in Proc. Eur. Conf. Opt. Commun., 2017, no. 1, pp. 1–3.

Chi, N.

Corcoran, B.

Dong, Z.

Du, L. B.

A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightw. Technol., vol. 25, no. 1, pp. 131–138, Jan. 2007.

Dutta, N. K.

G. P. Agrawal and N. K. Dutta, “Semiconductor lasers,” 3rd ed.Norwell, MA, USA: Kluwer, 1993, ch. 6, sec. 5, pp. 261–269.

Elschner, R.

Fan, S.

S. Fanet al., “Twin-SSB direct detection transmission over 80 km SSMF using Kramers–Kronig receiver,” in Proc. Eur. Conf. Opt. Commun., 2017, pp. 1–3.

Faruk, M. S.

M. S. Faruk and S. J. Savory, “Digital signal processing for coherent transceivers employing multilevel formats,” J. Lightw. Technol., vol. 35, no. 5, pp. 1125–1141, Mar. 2017.

Foo, B.

Hoang, T. M.

T. M. Hoanget al., “Transmission of 344 Gb/s 16-QAM using a simplified coherent receiver based on single-ended detection,” IEEE Photon. J., vol. 8, no. 3, pp. 1–8, 2016, Art. no. .

Ip, E.

Jacobsen, G.

T. Xu, G. Jacobsen, S. Popov, T. Liu, Y. Zhang, and P. Bayvel, “Analytical estimation in differential optical transmission systems influenced by equalization enhanced phase noise,” in Proc. PIERS 2016 Prog. Electromagn. Res. Symp., 2016, pp. 4844–4848.

Kahn, J. M.

Kim, H.

Lau, A. P. T.

Le, S. T.

S. T. Leet al., “8 × 256 Gbps virtual-carrier assisted WDM direct-detection transmission over a single span of 200 km,” in Proc. Eur. Conf. Opt. Commun., 2017, pp. 1–3.

Li, X.

Li, Z.

Z. Liet al., “Spectrally efficient 168 Gb/s/λ WDM 64-QAM single-sideband nyquist-subcarrier modulation with Kramers–Kronig direct-detection receivers,” J. Lightw. Technol., vol. 36, no. 6, pp. 1340–1346, Mar. 2018.

Z. Liet al., “SSBI mitigation and the Kramers–Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightw. Technol., vol. 35, no. 10, pp. 1887–1893, May 2017.

Z. Liet al., “Joint optimisation of resampling rate and carrier-to-signal power ratio in direct-detection Kramers–Kronig receivers,” in Proc. Eur. Conf. Opt. Commun., 2017, pp. 1–3.

Liu, T.

T. Xu, G. Jacobsen, S. Popov, T. Liu, Y. Zhang, and P. Bayvel, “Analytical estimation in differential optical transmission systems influenced by equalization enhanced phase noise,” in Proc. PIERS 2016 Prog. Electromagn. Res. Symp., 2016, pp. 4844–4848.

Lowery, A. J.

B. Corcoran, B. Foo, and A. J. Lowery, “Single-photodiode per polarization receiver with signal-signal beat interference suppression through heterodyne detection,” Opt. Express, vol. 26, no. 3, pp. 3075–3086, 2018.

A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightw. Technol., vol. 25, no. 1, pp. 131–138, Jan. 2007.

Malouin, C.

Mecozzi, A.

C. Antonelli, A. Mecozzi, M. Shtaif, X. Chen, S. Chandrasekhar, and P. J. Winzer, “Polarization multiplexing with the Kramers–Kronig receiver,” J. Lightw. Technol., vol. 35, no. 24, pp. 5418–5424, Dec. 2017.

A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers–Kronig coherent receiver,” Optica, vol. 3, no. 11, pp. 1220–1227, 2016.

Popov, S.

T. Xu, G. Jacobsen, S. Popov, T. Liu, Y. Zhang, and P. Bayvel, “Analytical estimation in differential optical transmission systems influenced by equalization enhanced phase noise,” in Proc. PIERS 2016 Prog. Electromagn. Res. Symp., 2016, pp. 4844–4848.

Ruan, X.

Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “Single carrier 400G transmission with single-ended heterodyne detection,” IEEE Photon. Technol. Lett., vol. 29, no. 21, pp. 1788–1791, 2017.

Savory, S. J.

M. S. Faruk and S. J. Savory, “Digital signal processing for coherent transceivers employing multilevel formats,” J. Lightw. Technol., vol. 35, no. 5, pp. 1125–1141, Mar. 2017.

Schmidt, T. J.

Seimetz, M.

M. Seimetz, “High-order modulation for optical fiber transmission,” Berlin, Germany: Springer-Verlag, 2009, ch. 2, sec. 2.1.1, pp. 15–17.

Senior, J.

J. Senior, “Optical fiber communications: Principles and practice,” 3rd ed.Englewood Cliffs, NJ, USA: Prentice-Hall, 2009, ch. 6, sec. 6.7.4, pp. 356–360.

Shtaif, M.

C. Antonelli, A. Mecozzi, M. Shtaif, X. Chen, S. Chandrasekhar, and P. J. Winzer, “Polarization multiplexing with the Kramers–Kronig receiver,” J. Lightw. Technol., vol. 35, no. 24, pp. 5418–5424, Dec. 2017.

A. Mecozzi, C. Antonelli, and M. Shtaif, “Kramers–Kronig coherent receiver,” Optica, vol. 3, no. 11, pp. 1220–1227, 2016.

Winzer, P. J.

C. Antonelli, A. Mecozzi, M. Shtaif, X. Chen, S. Chandrasekhar, and P. J. Winzer, “Polarization multiplexing with the Kramers–Kronig receiver,” J. Lightw. Technol., vol. 35, no. 24, pp. 5418–5424, Dec. 2017.

Xie, C.

C. Xie, “Local oscillator phase noise induced penalties in optical coherent detection systems using electronic chromatic dispersion compensation,” in Proc. Opt. Fiber Commun. Conf. Nat. Fiber Opt. Eng. Conf., 2009, pp. 1–3.

Xu, T.

T. Xu, G. Jacobsen, S. Popov, T. Liu, Y. Zhang, and P. Bayvel, “Analytical estimation in differential optical transmission systems influenced by equalization enhanced phase noise,” in Proc. PIERS 2016 Prog. Electromagn. Res. Symp., 2016, pp. 4844–4848.

Yu, J.

Zhang, B.

Zhang, F.

Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “Single carrier 400G transmission with single-ended heterodyne detection,” IEEE Photon. Technol. Lett., vol. 29, no. 21, pp. 1788–1791, 2017.

Zhang, Y.

T. Xu, G. Jacobsen, S. Popov, T. Liu, Y. Zhang, and P. Bayvel, “Analytical estimation in differential optical transmission systems influenced by equalization enhanced phase noise,” in Proc. PIERS 2016 Prog. Electromagn. Res. Symp., 2016, pp. 4844–4848.

Zhu, Y.

Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “Single carrier 400G transmission with single-ended heterodyne detection,” IEEE Photon. Technol. Lett., vol. 29, no. 21, pp. 1788–1791, 2017.

Zou, K.

Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “Single carrier 400G transmission with single-ended heterodyne detection,” IEEE Photon. Technol. Lett., vol. 29, no. 21, pp. 1788–1791, 2017.

Cisco (1)

Cisco, “Cisco visual networking index: Forecast and methodology 2016-2021,” White paper, 2017.

IEEE Photon. J. (1)

T. M. Hoanget al., “Transmission of 344 Gb/s 16-QAM using a simplified coherent receiver based on single-ended detection,” IEEE Photon. J., vol. 8, no. 3, pp. 1–8, 2016, Art. no. .

IEEE Photon. Technol. Lett. (1)

Y. Zhu, K. Zou, X. Ruan, and F. Zhang, “Single carrier 400G transmission with single-ended heterodyne detection,” IEEE Photon. Technol. Lett., vol. 29, no. 21, pp. 1788–1791, 2017.

J. Lightw. Technol. (5)

C. Antonelli, A. Mecozzi, M. Shtaif, X. Chen, S. Chandrasekhar, and P. J. Winzer, “Polarization multiplexing with the Kramers–Kronig receiver,” J. Lightw. Technol., vol. 35, no. 24, pp. 5418–5424, Dec. 2017.

A. J. Lowery, L. B. Du, and J. Armstrong, “Performance of optical OFDM in ultralong-haul WDM lightwave systems,” J. Lightw. Technol., vol. 25, no. 1, pp. 131–138, Jan. 2007.

Z. Liet al., “SSBI mitigation and the Kramers–Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightw. Technol., vol. 35, no. 10, pp. 1887–1893, May 2017.

M. S. Faruk and S. J. Savory, “Digital signal processing for coherent transceivers employing multilevel formats,” J. Lightw. Technol., vol. 35, no. 5, pp. 1125–1141, Mar. 2017.

Z. Liet al., “Spectrally efficient 168 Gb/s/λ WDM 64-QAM single-sideband nyquist-subcarrier modulation with Kramers–Kronig direct-detection receivers,” J. Lightw. Technol., vol. 36, no. 6, pp. 1340–1346, Mar. 2018.

Opt. Express (6)

Optica (1)

Other (15)

Z. Liet al., “Joint optimisation of resampling rate and carrier-to-signal power ratio in direct-detection Kramers–Kronig receivers,” in Proc. Eur. Conf. Opt. Commun., 2017, pp. 1–3.

[Online]. Available: http://www.amonics.com/product/44. Accessed on: , 2019.

[Online]. Available: https://www.toptica.com/products/wavemeters-laser-diodes/laser-diodes/dfbdbr/. Accessed on: , 2019.

C. Xie, “Local oscillator phase noise induced penalties in optical coherent detection systems using electronic chromatic dispersion compensation,” in Proc. Opt. Fiber Commun. Conf. Nat. Fiber Opt. Eng. Conf., 2009, pp. 1–3.

T. Xu, G. Jacobsen, S. Popov, T. Liu, Y. Zhang, and P. Bayvel, “Analytical estimation in differential optical transmission systems influenced by equalization enhanced phase noise,” in Proc. PIERS 2016 Prog. Electromagn. Res. Symp., 2016, pp. 4844–4848.

X. Chenet al., “218-Gb/s single-wavelength, single-polarization, single-photodiode transmission over 125-km of standard singlemode fiber using Kramers–Kronig detection,” in Proc. Opt. Fiber Commun. Conf., 2017, pp. 1–3.

S. T. Leet al., “8 × 256 Gbps virtual-carrier assisted WDM direct-detection transmission over a single span of 200 km,” in Proc. Eur. Conf. Opt. Commun., 2017, pp. 1–3.

S. Fanet al., “Twin-SSB direct detection transmission over 80 km SSMF using Kramers–Kronig receiver,” in Proc. Eur. Conf. Opt. Commun., 2017, pp. 1–3.

X. Chenet al., “4 × 240 Gb/s dense WDM and PDM Kramers–Kronig detection with 125-km SSMF transmission,” in Proc. Eur. Conf. Opt. Commun., 2017, no. 1, pp. 1–3.

M. Seimetz, “High-order modulation for optical fiber transmission,” Berlin, Germany: Springer-Verlag, 2009, ch. 2, sec. 2.1.1, pp. 15–17.

[Online]. Available: http://nolatech.ru/files/datasheet/DFB-1550-14BF.pdf. Accessed on: , 2019.

[Online]. Available: https://media.digikey.com/pdf/Data%20Sheets/Avago%20PDFs/D2547P.pdf. Accessed on: , 2019.

[Online]. Available: https://www.furukawa.co.jp/fitel/english/active/pdf/signal/ODC-7R001G_FRL15DCWx-A8x-xxxxx-x.pdf. Accessed on: , 2019.

G. P. Agrawal and N. K. Dutta, “Semiconductor lasers,” 3rd ed.Norwell, MA, USA: Kluwer, 1993, ch. 6, sec. 5, pp. 261–269.

J. Senior, “Optical fiber communications: Principles and practice,” 3rd ed.Englewood Cliffs, NJ, USA: Prentice-Hall, 2009, ch. 6, sec. 6.7.4, pp. 356–360.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.