Abstract

Four level pulse amplitude modulation (PAM-4) has become the modulation format of choice to replace on–off keying (OOK) for the 400 Gb/s short reach optical communications systems. In this paper, we investigate the possible modifications to conventional Mach–Zehnder modulator structures to improve the system performance. We present three different silicon photonic Mach–Zehnder modulator architectures for generating PAM-4 in the optical domain using OOK electrical driving signals. We investigate the transfer function and linearity of each modulator and experimentally compare their PAM-4 generation and transmission performance with and without use of digital signal processing (DSP). We achieve the highest reported PAM-4 generation and transmission without the use of DSP. The power consumption of each modulator is presented, and we experimentally show that multielectrode Mach–Zehnder modulators provide a clear advantage at higher symbol rates compared to conventional Mach–Zehnder modulators.

© 2019 CCBY

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. IEEE P802.3ba 40 Gb/s and 100 Gb/s Ethernet Task Force. 2010. [Online]. Available: http://www.ieee802.org/3/ba/
  2. K. Zhonget al., “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express, vol. 23, no. 2, pp. 1176–1189, 2015.
  3. P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100 Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4, pp. 150–157, 2014.
  4. J. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “CMOS-compatible silicon photonic IQ modulator for 84 gbaud 16QAM and 70 gbaud 32QAM,” in Proc. Opt. Fiber Commun. Conf. Expo., San Diego, CA, USA, 2018, Paper Tu2E.4.
  5. L. Chenet al., “Silicon photonics for 100G-and-beyond coherent transmissions,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, Paper. Th1B.1.
  6. “100 GLambda multi source agreement,” 400G-FR4 Technical Spec D2p0, Rev2, 2018.
  7. J. Zhou, C. Yu, and H. Kim, “Transmission performance of OOK and 4-PAM signals using directly modulated 1.5-μm VCSEL for optical access network,” J. Lightw. Technol., vol. 33, no. 15, pp. 3243–3249, 2015.
  8. C. Xieet al., “400-Gb/s PDM-4PAM WDM system using a monolithic 2×4 VCSEL array and coherent detection,” J. Lightw. Technol., vol. 33, no. 3, pp. 670–677, 2015.
  9. A. Roshan-Zamiret al., “A two-segmented optical DAC 40 Gb/s PAM4 silicon microring resonator modulator transmitter in 65nm CMOS,” in Proc. IEEE Opt. Interconnects Conf., 2017, pp. 5–6.
  10. R. Liet al., “Silicon photonic ring-assisted MZI for 50 Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photon. Technol. Lett., vol. 29, no. 12, pp. 1046–1049, 2017.
  11. J. Sunet al., “A 128 Gb/s PAM4 silicon microring modulator,” in Proc. Opt. Fiber Commun. Conf. Postdeadline Papers, San Diego, CA, USA, 2018, Paper Th4A.7.
  12. R. Liet al., “High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators,” Opt. Express, vol. 25, no. 12, pp. 13222–13229, 2017.
  13. R. Dubé-Demers, S. LaRochelle, and W. Shi, “Low-power DAC-less PAM-4 transmitter using a cascaded microring modulator,” Opt. Lett., vol. 41, no. 22, pp. 5369–5372, 2016.
  14. N. Abadíaet al., “Low-power consumption Franz-Keldysh effect plasmonic modulator,” Opt. Express, vol. 22, no. 9, pp. 11236–11243, 2014.
  15. J. Verbistet al., “DAC-less and DSP-free 112 Gb/s PAM-4 transmitter using two parallel electroabsorption modulators,” J. Lightw. Technol., vol. 36, no. 5, pp. 1281–1286, 2018.
  16. A. Abbasiet al., “III–V-on-silicon C-band high-speed electro-absorption-modulated DFB laser,” J. Lightw. Technol., vol. 36, no. 2, pp. 252–257, 2018.
  17. H. Zwickelet al., “Silicon-organic hybrid (SOH) modulators for intensity-modulation / direct-detection links with line rates of up to 120 Gbit/s,” Opt. Express, vol. 25, pp. 23784–23800, 2017.
  18. M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, “Silicon intensity Mach–Zehnder modulator for single lane 100  Gb/s applications,” Photon. Res., vol. 6, no. 2, pp. 109–116, 2018.
  19. S. Shaoet al., “Optical PAM-4 signal generation using a silicon Mach-Zehnder optical modulator,” Opt. Express, vol. 25, no. 19, pp. 23003–23013, 2017.
  20. H. Sepehrian, A. Yekani, L. A. Rusch, and W. Shi, “CMOS-photonics codesign of an integrated DAC-Less PAM-4 silicon photonic transmitter,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 12, pp. 2158–2168, 2016.
  21. A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photon. J., vol. 8, no. 1, 2016, Art. no. .
  22. A. Samaniet al., “Ook and pam optical modulation using a single drive push pull silicon Mach-Zehnder modulator” in Proc. Int. Conf. Group IV Photon., Paris, France, 2014, pp. 45–46.
  23. A. Samaniet al., “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express, vol. 25, no. 12, pp. 13252–13262, 2017.
  24. A. Samaniet al., “Silicon photonics modulator architectures for multi-level signal generation and transmission,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, Paper Tu2H.4.
  25. M. Papuchon, C. Puech, and A. Schnapper, “4-bits digitally driven integrated amplitude modulator for data processing,” Electron. Lett., vol. 16, no. 4, pp. 142–144, 1980.
  26. A. Yacoubian and P. K. Das, “Digital-to-analog conversion using electrooptic modulators,” IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 117–119, 2003.
  27. P. Dong, L. Chen, and Y. Chen, “High-speed low-voltage single-drive push–pull silicon Mach–Zehnder modulators,” Opt. Express, vol. 20, no. 6, pp. 6163–6169, 2012.
  28. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. QE-23, no. 1, pp. 123–129, 1987.
  29. D. Patelet al., “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express, vol. 23, no. 11, pp. 14263–14287, 2015.
  30. M. Streshinskyet al., “Low power 50 Gb/s silicon traveling wave Mach–Zehnder modulator near 1300 nm,” Opt. Express, vol. 21, no. 25, pp. 30350–30357, 2013.
  31. A. Samaniet al., “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photon. J., vol. 7, no. 3, 2015, Art. no. .
  32. 16. Y. Ehrlichman, O. Amrani, and S. Ruschin, “Improved digital-to-analog conversion using multi-electrode Mach-Zehnder interferometer,” J. Lightw. Technol., vol. 26, no. 21, pp. 3567–3575, 2008.
  33. PAM4 Signaling in High Speed Serial Technology: Test, Analysis, and Debug, Application Note, Techtronix. 2016. [Online]. Available: www.tek.com/application/100g-optical-electrical-tx-rx
  34. IEEE Standard for Ethernet, IEEE , Amendment 10, 2017.
  35. G. Agrawal, Fiber-Optic Communication Systems. Hoboken, NJ, USA: Wiley, 2013.
  36. Z. Yonget al., “RF and thermal considerations of a flip-chip integrated 40+ Gb/s silicon photonic electro-optic transmitter,” J. Lightw. Technol., vol. 36, no. 2, pp. 245–251, 2018.
  37. T. Baehr-Joneset al., “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express, vol. 20, no. 11, pp. 12014–12020, 2012.
  38. D. Gill, C. Xiong, J. Rosenberg, P. Pepeljugoski, J. Orcutt, and W. Green, “Modulator figure of merit for short reach data links,” Opt. Express, vol. 25, no. 20, pp. 24326–24339, 2017.
  39. H. Sepehrian, A. Yekani, W. Shi, and L. Rusch, “Assessing performance of silicon photonic modulators for pulse amplitude modulation,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 6, pp. 1–10, 2018.
  40. E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. Morsy-Osman, and D. V. Plant, “168-Gb/s single carrier PAM4 transmission for intra-data center optical interconnects,” IEEE Photon. Technol. Lett., vol. 29, no. 3, pp. 314–317, 2017.

2018 (6)

“100 GLambda multi source agreement,” 400G-FR4 Technical Spec D2p0, Rev2, 2018.

M. Li, L. Wang, X. Li, X. Xiao, and S. Yu, “Silicon intensity Mach–Zehnder modulator for single lane 100  Gb/s applications,” Photon. Res., vol. 6, no. 2, pp. 109–116, 2018.

J. Verbistet al., “DAC-less and DSP-free 112 Gb/s PAM-4 transmitter using two parallel electroabsorption modulators,” J. Lightw. Technol., vol. 36, no. 5, pp. 1281–1286, 2018.

A. Abbasiet al., “III–V-on-silicon C-band high-speed electro-absorption-modulated DFB laser,” J. Lightw. Technol., vol. 36, no. 2, pp. 252–257, 2018.

Z. Yonget al., “RF and thermal considerations of a flip-chip integrated 40+ Gb/s silicon photonic electro-optic transmitter,” J. Lightw. Technol., vol. 36, no. 2, pp. 245–251, 2018.

H. Sepehrian, A. Yekani, W. Shi, and L. Rusch, “Assessing performance of silicon photonic modulators for pulse amplitude modulation,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 6, pp. 1–10, 2018.

2017 (7)

2016 (3)

R. Dubé-Demers, S. LaRochelle, and W. Shi, “Low-power DAC-less PAM-4 transmitter using a cascaded microring modulator,” Opt. Lett., vol. 41, no. 22, pp. 5369–5372, 2016.

H. Sepehrian, A. Yekani, L. A. Rusch, and W. Shi, “CMOS-photonics codesign of an integrated DAC-Less PAM-4 silicon photonic transmitter,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 12, pp. 2158–2168, 2016.

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photon. J., vol. 8, no. 1, 2016, Art. no. .

2015 (5)

J. Zhou, C. Yu, and H. Kim, “Transmission performance of OOK and 4-PAM signals using directly modulated 1.5-μm VCSEL for optical access network,” J. Lightw. Technol., vol. 33, no. 15, pp. 3243–3249, 2015.

C. Xieet al., “400-Gb/s PDM-4PAM WDM system using a monolithic 2×4 VCSEL array and coherent detection,” J. Lightw. Technol., vol. 33, no. 3, pp. 670–677, 2015.

K. Zhonget al., “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express, vol. 23, no. 2, pp. 1176–1189, 2015.

A. Samaniet al., “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photon. J., vol. 7, no. 3, 2015, Art. no. .

D. Patelet al., “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express, vol. 23, no. 11, pp. 14263–14287, 2015.

2014 (2)

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100 Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4, pp. 150–157, 2014.

N. Abadíaet al., “Low-power consumption Franz-Keldysh effect plasmonic modulator,” Opt. Express, vol. 22, no. 9, pp. 11236–11243, 2014.

2013 (1)

2012 (2)

2008 (1)

16. Y. Ehrlichman, O. Amrani, and S. Ruschin, “Improved digital-to-analog conversion using multi-electrode Mach-Zehnder interferometer,” J. Lightw. Technol., vol. 26, no. 21, pp. 3567–3575, 2008.

2003 (1)

A. Yacoubian and P. K. Das, “Digital-to-analog conversion using electrooptic modulators,” IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 117–119, 2003.

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. QE-23, no. 1, pp. 123–129, 1987.

1980 (1)

M. Papuchon, C. Puech, and A. Schnapper, “4-bits digitally driven integrated amplitude modulator for data processing,” Electron. Lett., vol. 16, no. 4, pp. 142–144, 1980.

Abadía, N.

Abbasi, A.

A. Abbasiet al., “III–V-on-silicon C-band high-speed electro-absorption-modulated DFB laser,” J. Lightw. Technol., vol. 36, no. 2, pp. 252–257, 2018.

Agrawal, G.

G. Agrawal, Fiber-Optic Communication Systems. Hoboken, NJ, USA: Wiley, 2013.

Amrani, O.

16. Y. Ehrlichman, O. Amrani, and S. Ruschin, “Improved digital-to-analog conversion using multi-electrode Mach-Zehnder interferometer,” J. Lightw. Technol., vol. 26, no. 21, pp. 3567–3575, 2008.

Aroca, R.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100 Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4, pp. 150–157, 2014.

Baehr-Jones, T.

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. QE-23, no. 1, pp. 123–129, 1987.

Buhl, L. L.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100 Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4, pp. 150–157, 2014.

Chagnon, M.

E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. Morsy-Osman, and D. V. Plant, “168-Gb/s single carrier PAM4 transmission for intra-data center optical interconnects,” IEEE Photon. Technol. Lett., vol. 29, no. 3, pp. 314–317, 2017.

Chandrasekhar, S.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100 Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4, pp. 150–157, 2014.

Chen, L.

P. Dong, L. Chen, and Y. Chen, “High-speed low-voltage single-drive push–pull silicon Mach–Zehnder modulators,” Opt. Express, vol. 20, no. 6, pp. 6163–6169, 2012.

L. Chenet al., “Silicon photonics for 100G-and-beyond coherent transmissions,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, Paper. Th1B.1.

Chen, Y.

Chen, Y. K.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100 Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4, pp. 150–157, 2014.

Das, P. K.

A. Yacoubian and P. K. Das, “Digital-to-analog conversion using electrooptic modulators,” IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 117–119, 2003.

Dong, P.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100 Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4, pp. 150–157, 2014.

P. Dong, L. Chen, and Y. Chen, “High-speed low-voltage single-drive push–pull silicon Mach–Zehnder modulators,” Opt. Express, vol. 20, no. 6, pp. 6163–6169, 2012.

Dubé-Demers, R.

Ehrlichman, 16. Y.

16. Y. Ehrlichman, O. Amrani, and S. Ruschin, “Improved digital-to-analog conversion using multi-electrode Mach-Zehnder interferometer,” J. Lightw. Technol., vol. 26, no. 21, pp. 3567–3575, 2008.

El-Fiky, E.

E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. Morsy-Osman, and D. V. Plant, “168-Gb/s single carrier PAM4 transmission for intra-data center optical interconnects,” IEEE Photon. Technol. Lett., vol. 29, no. 3, pp. 314–317, 2017.

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photon. J., vol. 8, no. 1, 2016, Art. no. .

Gill, D.

Green, W.

Kim, H.

J. Zhou, C. Yu, and H. Kim, “Transmission performance of OOK and 4-PAM signals using directly modulated 1.5-μm VCSEL for optical access network,” J. Lightw. Technol., vol. 33, no. 15, pp. 3243–3249, 2015.

LaRochelle, S.

Li, M.

Li, R.

R. Liet al., “Silicon photonic ring-assisted MZI for 50 Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photon. Technol. Lett., vol. 29, no. 12, pp. 1046–1049, 2017.

R. Liet al., “High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators,” Opt. Express, vol. 25, no. 12, pp. 13222–13229, 2017.

Li, X.

Lin, J.

J. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “CMOS-compatible silicon photonic IQ modulator for 84 gbaud 16QAM and 70 gbaud 32QAM,” in Proc. Opt. Fiber Commun. Conf. Expo., San Diego, CA, USA, 2018, Paper Tu2E.4.

Liu, X.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100 Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4, pp. 150–157, 2014.

Morsy-Osman, M.

E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. Morsy-Osman, and D. V. Plant, “168-Gb/s single carrier PAM4 transmission for intra-data center optical interconnects,” IEEE Photon. Technol. Lett., vol. 29, no. 3, pp. 314–317, 2017.

Orcutt, J.

Papuchon, M.

M. Papuchon, C. Puech, and A. Schnapper, “4-bits digitally driven integrated amplitude modulator for data processing,” Electron. Lett., vol. 16, no. 4, pp. 142–144, 1980.

Patel, D.

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photon. J., vol. 8, no. 1, 2016, Art. no. .

D. Patelet al., “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express, vol. 23, no. 11, pp. 14263–14287, 2015.

Pepeljugoski, P.

Plant, D. V.

E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. Morsy-Osman, and D. V. Plant, “168-Gb/s single carrier PAM4 transmission for intra-data center optical interconnects,” IEEE Photon. Technol. Lett., vol. 29, no. 3, pp. 314–317, 2017.

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photon. J., vol. 8, no. 1, 2016, Art. no. .

Puech, C.

M. Papuchon, C. Puech, and A. Schnapper, “4-bits digitally driven integrated amplitude modulator for data processing,” Electron. Lett., vol. 16, no. 4, pp. 142–144, 1980.

Rosenberg, J.

Roshan-Zamir, A.

A. Roshan-Zamiret al., “A two-segmented optical DAC 40 Gb/s PAM4 silicon microring resonator modulator transmitter in 65nm CMOS,” in Proc. IEEE Opt. Interconnects Conf., 2017, pp. 5–6.

Rusch, L.

H. Sepehrian, A. Yekani, W. Shi, and L. Rusch, “Assessing performance of silicon photonic modulators for pulse amplitude modulation,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 6, pp. 1–10, 2018.

Rusch, L. A.

H. Sepehrian, A. Yekani, L. A. Rusch, and W. Shi, “CMOS-photonics codesign of an integrated DAC-Less PAM-4 silicon photonic transmitter,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 12, pp. 2158–2168, 2016.

J. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “CMOS-compatible silicon photonic IQ modulator for 84 gbaud 16QAM and 70 gbaud 32QAM,” in Proc. Opt. Fiber Commun. Conf. Expo., San Diego, CA, USA, 2018, Paper Tu2E.4.

Ruschin, S.

16. Y. Ehrlichman, O. Amrani, and S. Ruschin, “Improved digital-to-analog conversion using multi-electrode Mach-Zehnder interferometer,” J. Lightw. Technol., vol. 26, no. 21, pp. 3567–3575, 2008.

Samani, A.

E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. Morsy-Osman, and D. V. Plant, “168-Gb/s single carrier PAM4 transmission for intra-data center optical interconnects,” IEEE Photon. Technol. Lett., vol. 29, no. 3, pp. 314–317, 2017.

A. Samaniet al., “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express, vol. 25, no. 12, pp. 13252–13262, 2017.

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photon. J., vol. 8, no. 1, 2016, Art. no. .

A. Samaniet al., “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photon. J., vol. 7, no. 3, 2015, Art. no. .

A. Samaniet al., “Silicon photonics modulator architectures for multi-level signal generation and transmission,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, Paper Tu2H.4.

A. Samaniet al., “Ook and pam optical modulation using a single drive push pull silicon Mach-Zehnder modulator” in Proc. Int. Conf. Group IV Photon., Paris, France, 2014, pp. 45–46.

Schnapper, A.

M. Papuchon, C. Puech, and A. Schnapper, “4-bits digitally driven integrated amplitude modulator for data processing,” Electron. Lett., vol. 16, no. 4, pp. 142–144, 1980.

Sepehrian, H.

H. Sepehrian, A. Yekani, W. Shi, and L. Rusch, “Assessing performance of silicon photonic modulators for pulse amplitude modulation,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 6, pp. 1–10, 2018.

H. Sepehrian, A. Yekani, L. A. Rusch, and W. Shi, “CMOS-photonics codesign of an integrated DAC-Less PAM-4 silicon photonic transmitter,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 12, pp. 2158–2168, 2016.

J. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “CMOS-compatible silicon photonic IQ modulator for 84 gbaud 16QAM and 70 gbaud 32QAM,” in Proc. Opt. Fiber Commun. Conf. Expo., San Diego, CA, USA, 2018, Paper Tu2E.4.

Shao, S.

Shi, W.

H. Sepehrian, A. Yekani, W. Shi, and L. Rusch, “Assessing performance of silicon photonic modulators for pulse amplitude modulation,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 6, pp. 1–10, 2018.

R. Dubé-Demers, S. LaRochelle, and W. Shi, “Low-power DAC-less PAM-4 transmitter using a cascaded microring modulator,” Opt. Lett., vol. 41, no. 22, pp. 5369–5372, 2016.

H. Sepehrian, A. Yekani, L. A. Rusch, and W. Shi, “CMOS-photonics codesign of an integrated DAC-Less PAM-4 silicon photonic transmitter,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 12, pp. 2158–2168, 2016.

J. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “CMOS-compatible silicon photonic IQ modulator for 84 gbaud 16QAM and 70 gbaud 32QAM,” in Proc. Opt. Fiber Commun. Conf. Expo., San Diego, CA, USA, 2018, Paper Tu2E.4.

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. QE-23, no. 1, pp. 123–129, 1987.

Sowailem, M.

E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. Morsy-Osman, and D. V. Plant, “168-Gb/s single carrier PAM4 transmission for intra-data center optical interconnects,” IEEE Photon. Technol. Lett., vol. 29, no. 3, pp. 314–317, 2017.

Streshinsky, M.

Sun, J.

J. Sunet al., “A 128 Gb/s PAM4 silicon microring modulator,” in Proc. Opt. Fiber Commun. Conf. Postdeadline Papers, San Diego, CA, USA, 2018, Paper Th4A.7.

Veerasubramanian, V.

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photon. J., vol. 8, no. 1, 2016, Art. no. .

Verbist, J.

J. Verbistet al., “DAC-less and DSP-free 112 Gb/s PAM-4 transmitter using two parallel electroabsorption modulators,” J. Lightw. Technol., vol. 36, no. 5, pp. 1281–1286, 2018.

Wang, L.

Xiao, X.

Xie, C.

C. Xieet al., “400-Gb/s PDM-4PAM WDM system using a monolithic 2×4 VCSEL array and coherent detection,” J. Lightw. Technol., vol. 33, no. 3, pp. 670–677, 2015.

Xiong, C.

Yacoubian, A.

A. Yacoubian and P. K. Das, “Digital-to-analog conversion using electrooptic modulators,” IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 117–119, 2003.

Yekani, A.

H. Sepehrian, A. Yekani, W. Shi, and L. Rusch, “Assessing performance of silicon photonic modulators for pulse amplitude modulation,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 6, pp. 1–10, 2018.

H. Sepehrian, A. Yekani, L. A. Rusch, and W. Shi, “CMOS-photonics codesign of an integrated DAC-Less PAM-4 silicon photonic transmitter,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 12, pp. 2158–2168, 2016.

Yong, Z.

Z. Yonget al., “RF and thermal considerations of a flip-chip integrated 40+ Gb/s silicon photonic electro-optic transmitter,” J. Lightw. Technol., vol. 36, no. 2, pp. 245–251, 2018.

Yu, C.

J. Zhou, C. Yu, and H. Kim, “Transmission performance of OOK and 4-PAM signals using directly modulated 1.5-μm VCSEL for optical access network,” J. Lightw. Technol., vol. 33, no. 15, pp. 3243–3249, 2015.

Yu, S.

Zhong, K.

Zhou, J.

J. Zhou, C. Yu, and H. Kim, “Transmission performance of OOK and 4-PAM signals using directly modulated 1.5-μm VCSEL for optical access network,” J. Lightw. Technol., vol. 33, no. 15, pp. 3243–3249, 2015.

Zwickel, H.

Electron. Lett. (1)

M. Papuchon, C. Puech, and A. Schnapper, “4-bits digitally driven integrated amplitude modulator for data processing,” Electron. Lett., vol. 16, no. 4, pp. 142–144, 1980.

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. QE-23, no. 1, pp. 123–129, 1987.

IEEE J. Sel. Topics Quantum Electron. (2)

H. Sepehrian, A. Yekani, W. Shi, and L. Rusch, “Assessing performance of silicon photonic modulators for pulse amplitude modulation,” IEEE J. Sel. Topics Quantum Electron., vol. 24, no. 6, pp. 1–10, 2018.

P. Dong, X. Liu, S. Chandrasekhar, L. L. Buhl, R. Aroca, and Y. K. Chen, “Monolithic silicon photonic integrated circuits for compact 100 Gb/s coherent optical receivers and transmitters,” IEEE J. Sel. Topics Quantum Electron., vol. 20, no. 4, pp. 150–157, 2014.

IEEE Photon. J. (2)

A. Samani, V. Veerasubramanian, E. El-Fiky, D. Patel, and D. V. Plant, “A silicon photonic PAM-4 modulator based on dual-parallel Mach-Zehnder interferometers,” IEEE Photon. J., vol. 8, no. 1, 2016, Art. no. .

A. Samaniet al., “A low-voltage 35-GHz silicon photonic modulator-enabled 112-Gb/s transmission system,” IEEE Photon. J., vol. 7, no. 3, 2015, Art. no. .

IEEE Photon. Technol. Lett. (3)

R. Liet al., “Silicon photonic ring-assisted MZI for 50 Gb/s DAC-less and DSP-free PAM-4 transmission,” IEEE Photon. Technol. Lett., vol. 29, no. 12, pp. 1046–1049, 2017.

E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. Morsy-Osman, and D. V. Plant, “168-Gb/s single carrier PAM4 transmission for intra-data center optical interconnects,” IEEE Photon. Technol. Lett., vol. 29, no. 3, pp. 314–317, 2017.

A. Yacoubian and P. K. Das, “Digital-to-analog conversion using electrooptic modulators,” IEEE Photon. Technol. Lett., vol. 15, no. 1, pp. 117–119, 2003.

IEEE Trans. Circuits Syst. I, Reg. Papers (1)

H. Sepehrian, A. Yekani, L. A. Rusch, and W. Shi, “CMOS-photonics codesign of an integrated DAC-Less PAM-4 silicon photonic transmitter,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 12, pp. 2158–2168, 2016.

J. Lightw. Technol. (6)

Z. Yonget al., “RF and thermal considerations of a flip-chip integrated 40+ Gb/s silicon photonic electro-optic transmitter,” J. Lightw. Technol., vol. 36, no. 2, pp. 245–251, 2018.

J. Zhou, C. Yu, and H. Kim, “Transmission performance of OOK and 4-PAM signals using directly modulated 1.5-μm VCSEL for optical access network,” J. Lightw. Technol., vol. 33, no. 15, pp. 3243–3249, 2015.

C. Xieet al., “400-Gb/s PDM-4PAM WDM system using a monolithic 2×4 VCSEL array and coherent detection,” J. Lightw. Technol., vol. 33, no. 3, pp. 670–677, 2015.

16. Y. Ehrlichman, O. Amrani, and S. Ruschin, “Improved digital-to-analog conversion using multi-electrode Mach-Zehnder interferometer,” J. Lightw. Technol., vol. 26, no. 21, pp. 3567–3575, 2008.

J. Verbistet al., “DAC-less and DSP-free 112 Gb/s PAM-4 transmitter using two parallel electroabsorption modulators,” J. Lightw. Technol., vol. 36, no. 5, pp. 1281–1286, 2018.

A. Abbasiet al., “III–V-on-silicon C-band high-speed electro-absorption-modulated DFB laser,” J. Lightw. Technol., vol. 36, no. 2, pp. 252–257, 2018.

Opt. Express (11)

R. Liet al., “High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators,” Opt. Express, vol. 25, no. 12, pp. 13222–13229, 2017.

A. Samaniet al., “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach Zehnder modulator,” Opt. Express, vol. 25, no. 12, pp. 13252–13262, 2017.

S. Shaoet al., “Optical PAM-4 signal generation using a silicon Mach-Zehnder optical modulator,” Opt. Express, vol. 25, no. 19, pp. 23003–23013, 2017.

H. Zwickelet al., “Silicon-organic hybrid (SOH) modulators for intensity-modulation / direct-detection links with line rates of up to 120 Gbit/s,” Opt. Express, vol. 25, pp. 23784–23800, 2017.

D. Gill, C. Xiong, J. Rosenberg, P. Pepeljugoski, J. Orcutt, and W. Green, “Modulator figure of merit for short reach data links,” Opt. Express, vol. 25, no. 20, pp. 24326–24339, 2017.

P. Dong, L. Chen, and Y. Chen, “High-speed low-voltage single-drive push–pull silicon Mach–Zehnder modulators,” Opt. Express, vol. 20, no. 6, pp. 6163–6169, 2012.

T. Baehr-Joneset al., “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express, vol. 20, no. 11, pp. 12014–12020, 2012.

M. Streshinskyet al., “Low power 50 Gb/s silicon traveling wave Mach–Zehnder modulator near 1300 nm,” Opt. Express, vol. 21, no. 25, pp. 30350–30357, 2013.

N. Abadíaet al., “Low-power consumption Franz-Keldysh effect plasmonic modulator,” Opt. Express, vol. 22, no. 9, pp. 11236–11243, 2014.

K. Zhonget al., “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express, vol. 23, no. 2, pp. 1176–1189, 2015.

D. Patelet al., “Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator,” Opt. Express, vol. 23, no. 11, pp. 14263–14287, 2015.

Opt. Lett. (1)

Photon. Res. (1)

Other (11)

A. Samaniet al., “Ook and pam optical modulation using a single drive push pull silicon Mach-Zehnder modulator” in Proc. Int. Conf. Group IV Photon., Paris, France, 2014, pp. 45–46.

A. Samaniet al., “Silicon photonics modulator architectures for multi-level signal generation and transmission,” in Proc. Opt. Fiber Commun. Conf., Los Angeles, CA, USA, 2017, Paper Tu2H.4.

PAM4 Signaling in High Speed Serial Technology: Test, Analysis, and Debug, Application Note, Techtronix. 2016. [Online]. Available: www.tek.com/application/100g-optical-electrical-tx-rx

IEEE Standard for Ethernet, IEEE , Amendment 10, 2017.

G. Agrawal, Fiber-Optic Communication Systems. Hoboken, NJ, USA: Wiley, 2013.

A. Roshan-Zamiret al., “A two-segmented optical DAC 40 Gb/s PAM4 silicon microring resonator modulator transmitter in 65nm CMOS,” in Proc. IEEE Opt. Interconnects Conf., 2017, pp. 5–6.

J. Sunet al., “A 128 Gb/s PAM4 silicon microring modulator,” in Proc. Opt. Fiber Commun. Conf. Postdeadline Papers, San Diego, CA, USA, 2018, Paper Th4A.7.

IEEE P802.3ba 40 Gb/s and 100 Gb/s Ethernet Task Force. 2010. [Online]. Available: http://www.ieee802.org/3/ba/

J. Lin, H. Sepehrian, L. A. Rusch, and W. Shi, “CMOS-compatible silicon photonic IQ modulator for 84 gbaud 16QAM and 70 gbaud 32QAM,” in Proc. Opt. Fiber Commun. Conf. Expo., San Diego, CA, USA, 2018, Paper Tu2E.4.

L. Chenet al., “Silicon photonics for 100G-and-beyond coherent transmissions,” in Proc. Opt. Fiber Commun. Conf., Anaheim, CA, USA, 2016, Paper. Th1B.1.

“100 GLambda multi source agreement,” 400G-FR4 Technical Spec D2p0, Rev2, 2018.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.