Abstract

This work reports the development and application of two liquid-core microstructured polymer optical fibers (LC-mPOF) with different microstructure sizes. They are used in a fiber-enhanced Raman spectroscopy sensing platform, with the aim of detecting glucose in aqueous solutions in the clinically relevant range for sodium–glucose cotransporter 2 inhibitor therapy. The sensing platform is tested for low-concentration glucose solutions using each LC-mPOF. Results confirm that a significant enhancement of the Raman signal is achieved in comparison to conventional Raman spectroscopy. Additional measurements are carried out to obtain the valid measurement range, the resolution, and the limit of detection, showing that the LC-mPOF with 66-μm-diameter central hollow core has the highest potential for future clinical applications. Finally, preliminary tests successfully demonstrate glucose identification in urine.

© 2019 CCBY

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. WHO, Diabetes Mellitus, Fact Sheet N°138. Geneva, Switzerland: WHO Media Centre, 2018.
  2. F. Gomez-Peraltaet al., “Practical approach to initiating SGLT2 inhibitors in type 2 diabetes,” Diabetes Therapy, vol. 8, no. 5, pp. 953–962, 2017.
  3. S. Riser Taylor and K. B. Harris, “The clinical efficacy and safety of sodium glucose cotransporter-2 inhibitors in adults with type 2 diabetes mellitus,” Pharmacotherapy, vol. 33, no. 9, pp. 984–999, 2013.
  4. FDA Warns About Rare Occurrences of a Serious Infection of the Genital Area With SGLT2 Inhibitors for Diabetes, US FDA, Silver Spring, MD, USA, Saf. Announc., Drug Safety, 2018.
  5. S. R. Kimet al., “Morning spot urine glucose-to-creatinine ratios predict overnight urinary glucose excretion in patients with type 2 diabetes,” Ann. Lab. Med., vol. 37, no. 1, pp. 9–17, 2017.
  6. J. Shaoet al., “In vivo blood glucose quantification using Raman spectroscopy,” PLoS One, vol. 7, no. 10, 2012, Paper no. e48127.
  7. J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt., vol. 10, no. 3, 2005, Paper no. 031110.
  8. O. Lyandreset al., “Progress toward an in vivo surface-enhanced Raman spectroscopy glucose sensor,” Diabetes Technol. Therapeutics, vol. 10, no. 4, pp. 257–265, 2008.
  9. T. Frosch, D. Yan, and J. Popp, “Ultrasensitive fiber enhanced UV resonance raman sensing of drugs,” Anal. Chem., vol. 85, no. 13, pp. 6264–6271, 2013.
  10. D. Yanet al., “Fiber enhanced Raman spectroscopic analysis as a novel method for diagnosis and monitoring of diseases related to hyperbilirubinemia and hyperbiliverdinemia,” Analyst, vol. 141, no. 21, pp. 6104–6115, 2016.
  11. D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Fiber enhanced Raman sensing of levofloxacin by PCF bandgap-shifting into the visible range,” Anal. Methods, vol. 10, no. 6, pp. 586–592, 2018.
  12. D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Highly sensitive broadband Raman sensing of antibiotics in step-index hollow-core photonic crystal fibers,” ACS Photon., vol. 4, no. 1, pp. 138–145, 2017.
  13. D. Yanet al., “Fiber-enhanced Raman sensing of cefuroxime in urine,” Anal. Chem., vol. 90, pp. 13243–13248, 2018.
  14. A. Knebl, D. Yan, J. Popp, and T. Frosch, “Fiber enhanced raman gas spectroscopy,” Trends Anal. Chem., vol. 103, pp. 230–238, 2018.
  15. X. Yanget al., “Hollow-core photonic crystal fibers for surface-enhanced raman scattering probes,” Int. J. Opt., vol. 2011, 2011, Paper no. 754610.
  16. A. Khetaniet al., “Hollow core photonic crystal fiber as a reusable Raman biosensor,” Opt. Express, vol. 21, no. 10, pp. 12340–12350, 2013.
  17. U. S. Dinishet al., “Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber,” Biosens. Bioelectron., vol. 33, no. 1, pp. 293–298, 2012.
  18. J. C. Knight, “Photonic crystal fibres,” Nature, vol. 424, no. 6950, pp. 847–851, 2003.
  19. M. Azkuneet al., “U-shaped and surface functionalized polymer optical fiber probe for glucose detection,” Sensors, vol. 18, no. 1, 2018, Paper no. 34.
  20. K. J. Thomaset al., “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt., vol. 10, no. 5, 2008, Paper no. 055303.
  21. H. Willis, V. J. Zichy, and P. Hendra, “The laser-raman and infra-red spectra of poly(methyl methacrylate),” Polymer, vol. 10, pp. 737–746, 1969.
  22. E. Arrospideet al., “Polymers beyond standard optical fibres—Fabrication of microstructured polymer optical fibres,” Polym. Int., vol. 67, no. 9, pp. 1155–1163, 2018.
  23. Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett., vol. 85, no. 22, pp. 5182–5184, 2004.
  24. K. Nielsenet al., “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt., vol. 7, no. 8, pp. L13–L20, 2005.
  25. K. H. Liland, “Baseline: Baseline correction of spectra,” R Package Version 2.15, 2015. [Online]. Available: https://CRAN.R-project.org/package=baseline
  26. C. Beleites and V. Sergo, “HyperSpec: A package to handle hyperspectral data sets in R,” R Package Version 2.15, 2018. [Online]. Available: https://CRAN.R-project.org/package=hyperSpec
  27. Z. Iqbal, “Raman scattering and the electronically-induced phase transition in K3Fe(CN)6 at 130 K,” J. Phys. C, Solid State Phys., vol. 10, no. 18, pp. 3533–3543, 1977.
  28. S. Chaplin, “SGLT2 inhibitors and risk of genitourinary infections,” Prescriber, vol. 27, no. 12, pp. 26–30, 2016.
  29. A. Taharaet al., “Characterization and comparison of sodium-glucose cotransporter 2 inhibitors in pharmacokinetics, pharmacodynamics, and pharmacologic effects,” J. Pharmacol. Sci., vol. 130, no. 3, pp. 159–169, 2016.
  30. A. Shrivastava and V. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chronicles Young Sci., vol. 2, no. 1, pp. 21–25, 2011.
  31. W. R. Premasiri, W. Ranjith, R. H. Clarke, and M. E. Womble, “Urine analysis by laser Raman spectroscopy,” Lasers Surg. Med., vol. 28, no. 4, pp. 330–334, 2011.

2018 (5)

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Fiber enhanced Raman sensing of levofloxacin by PCF bandgap-shifting into the visible range,” Anal. Methods, vol. 10, no. 6, pp. 586–592, 2018.

D. Yanet al., “Fiber-enhanced Raman sensing of cefuroxime in urine,” Anal. Chem., vol. 90, pp. 13243–13248, 2018.

A. Knebl, D. Yan, J. Popp, and T. Frosch, “Fiber enhanced raman gas spectroscopy,” Trends Anal. Chem., vol. 103, pp. 230–238, 2018.

M. Azkuneet al., “U-shaped and surface functionalized polymer optical fiber probe for glucose detection,” Sensors, vol. 18, no. 1, 2018, Paper no. 34.

E. Arrospideet al., “Polymers beyond standard optical fibres—Fabrication of microstructured polymer optical fibres,” Polym. Int., vol. 67, no. 9, pp. 1155–1163, 2018.

2017 (3)

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Highly sensitive broadband Raman sensing of antibiotics in step-index hollow-core photonic crystal fibers,” ACS Photon., vol. 4, no. 1, pp. 138–145, 2017.

F. Gomez-Peraltaet al., “Practical approach to initiating SGLT2 inhibitors in type 2 diabetes,” Diabetes Therapy, vol. 8, no. 5, pp. 953–962, 2017.

S. R. Kimet al., “Morning spot urine glucose-to-creatinine ratios predict overnight urinary glucose excretion in patients with type 2 diabetes,” Ann. Lab. Med., vol. 37, no. 1, pp. 9–17, 2017.

2016 (3)

S. Chaplin, “SGLT2 inhibitors and risk of genitourinary infections,” Prescriber, vol. 27, no. 12, pp. 26–30, 2016.

A. Taharaet al., “Characterization and comparison of sodium-glucose cotransporter 2 inhibitors in pharmacokinetics, pharmacodynamics, and pharmacologic effects,” J. Pharmacol. Sci., vol. 130, no. 3, pp. 159–169, 2016.

D. Yanet al., “Fiber enhanced Raman spectroscopic analysis as a novel method for diagnosis and monitoring of diseases related to hyperbilirubinemia and hyperbiliverdinemia,” Analyst, vol. 141, no. 21, pp. 6104–6115, 2016.

2013 (3)

S. Riser Taylor and K. B. Harris, “The clinical efficacy and safety of sodium glucose cotransporter-2 inhibitors in adults with type 2 diabetes mellitus,” Pharmacotherapy, vol. 33, no. 9, pp. 984–999, 2013.

T. Frosch, D. Yan, and J. Popp, “Ultrasensitive fiber enhanced UV resonance raman sensing of drugs,” Anal. Chem., vol. 85, no. 13, pp. 6264–6271, 2013.

A. Khetaniet al., “Hollow core photonic crystal fiber as a reusable Raman biosensor,” Opt. Express, vol. 21, no. 10, pp. 12340–12350, 2013.

2012 (2)

U. S. Dinishet al., “Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber,” Biosens. Bioelectron., vol. 33, no. 1, pp. 293–298, 2012.

J. Shaoet al., “In vivo blood glucose quantification using Raman spectroscopy,” PLoS One, vol. 7, no. 10, 2012, Paper no. e48127.

2011 (3)

X. Yanget al., “Hollow-core photonic crystal fibers for surface-enhanced raman scattering probes,” Int. J. Opt., vol. 2011, 2011, Paper no. 754610.

A. Shrivastava and V. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chronicles Young Sci., vol. 2, no. 1, pp. 21–25, 2011.

W. R. Premasiri, W. Ranjith, R. H. Clarke, and M. E. Womble, “Urine analysis by laser Raman spectroscopy,” Lasers Surg. Med., vol. 28, no. 4, pp. 330–334, 2011.

2008 (2)

K. J. Thomaset al., “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt., vol. 10, no. 5, 2008, Paper no. 055303.

O. Lyandreset al., “Progress toward an in vivo surface-enhanced Raman spectroscopy glucose sensor,” Diabetes Technol. Therapeutics, vol. 10, no. 4, pp. 257–265, 2008.

2005 (2)

J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt., vol. 10, no. 3, 2005, Paper no. 031110.

K. Nielsenet al., “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt., vol. 7, no. 8, pp. L13–L20, 2005.

2004 (1)

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett., vol. 85, no. 22, pp. 5182–5184, 2004.

2003 (1)

J. C. Knight, “Photonic crystal fibres,” Nature, vol. 424, no. 6950, pp. 847–851, 2003.

1977 (1)

Z. Iqbal, “Raman scattering and the electronically-induced phase transition in K3Fe(CN)6 at 130 K,” J. Phys. C, Solid State Phys., vol. 10, no. 18, pp. 3533–3543, 1977.

1969 (1)

H. Willis, V. J. Zichy, and P. Hendra, “The laser-raman and infra-red spectra of poly(methyl methacrylate),” Polymer, vol. 10, pp. 737–746, 1969.

Arrospide, E.

E. Arrospideet al., “Polymers beyond standard optical fibres—Fabrication of microstructured polymer optical fibres,” Polym. Int., vol. 67, no. 9, pp. 1155–1163, 2018.

Azkune, M.

M. Azkuneet al., “U-shaped and surface functionalized polymer optical fiber probe for glucose detection,” Sensors, vol. 18, no. 1, 2018, Paper no. 34.

Beleites, C.

C. Beleites and V. Sergo, “HyperSpec: A package to handle hyperspectral data sets in R,” R Package Version 2.15, 2018. [Online]. Available: https://CRAN.R-project.org/package=hyperSpec

Borchert, M.

J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt., vol. 10, no. 3, 2005, Paper no. 031110.

Chaplin, S.

S. Chaplin, “SGLT2 inhibitors and risk of genitourinary infections,” Prescriber, vol. 27, no. 12, pp. 26–30, 2016.

Clarke, R. H.

W. R. Premasiri, W. Ranjith, R. H. Clarke, and M. E. Womble, “Urine analysis by laser Raman spectroscopy,” Lasers Surg. Med., vol. 28, no. 4, pp. 330–334, 2011.

Dinish, U. S.

U. S. Dinishet al., “Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber,” Biosens. Bioelectron., vol. 33, no. 1, pp. 293–298, 2012.

Frosch, T.

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Fiber enhanced Raman sensing of levofloxacin by PCF bandgap-shifting into the visible range,” Anal. Methods, vol. 10, no. 6, pp. 586–592, 2018.

A. Knebl, D. Yan, J. Popp, and T. Frosch, “Fiber enhanced raman gas spectroscopy,” Trends Anal. Chem., vol. 103, pp. 230–238, 2018.

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Highly sensitive broadband Raman sensing of antibiotics in step-index hollow-core photonic crystal fibers,” ACS Photon., vol. 4, no. 1, pp. 138–145, 2017.

T. Frosch, D. Yan, and J. Popp, “Ultrasensitive fiber enhanced UV resonance raman sensing of drugs,” Anal. Chem., vol. 85, no. 13, pp. 6264–6271, 2013.

Gomez-Peralta, F.

F. Gomez-Peraltaet al., “Practical approach to initiating SGLT2 inhibitors in type 2 diabetes,” Diabetes Therapy, vol. 8, no. 5, pp. 953–962, 2017.

Gupta, V.

A. Shrivastava and V. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chronicles Young Sci., vol. 2, no. 1, pp. 21–25, 2011.

Harris, K. B.

S. Riser Taylor and K. B. Harris, “The clinical efficacy and safety of sodium glucose cotransporter-2 inhibitors in adults with type 2 diabetes mellitus,” Pharmacotherapy, vol. 33, no. 9, pp. 984–999, 2013.

Hendra, P.

H. Willis, V. J. Zichy, and P. Hendra, “The laser-raman and infra-red spectra of poly(methyl methacrylate),” Polymer, vol. 10, pp. 737–746, 1969.

Huang, Y.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett., vol. 85, no. 22, pp. 5182–5184, 2004.

Iqbal, Z.

Z. Iqbal, “Raman scattering and the electronically-induced phase transition in K3Fe(CN)6 at 130 K,” J. Phys. C, Solid State Phys., vol. 10, no. 18, pp. 3533–3543, 1977.

Khetani, A.

Kim, S. R.

S. R. Kimet al., “Morning spot urine glucose-to-creatinine ratios predict overnight urinary glucose excretion in patients with type 2 diabetes,” Ann. Lab. Med., vol. 37, no. 1, pp. 9–17, 2017.

Knebl, A.

A. Knebl, D. Yan, J. Popp, and T. Frosch, “Fiber enhanced raman gas spectroscopy,” Trends Anal. Chem., vol. 103, pp. 230–238, 2018.

Knight, J. C.

J. C. Knight, “Photonic crystal fibres,” Nature, vol. 424, no. 6950, pp. 847–851, 2003.

Lambert, J. L.

J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt., vol. 10, no. 3, 2005, Paper no. 031110.

Liland, K. H.

K. H. Liland, “Baseline: Baseline correction of spectra,” R Package Version 2.15, 2015. [Online]. Available: https://CRAN.R-project.org/package=baseline

Lyandres, O.

O. Lyandreset al., “Progress toward an in vivo surface-enhanced Raman spectroscopy glucose sensor,” Diabetes Technol. Therapeutics, vol. 10, no. 4, pp. 257–265, 2008.

Nielsen, K.

K. Nielsenet al., “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt., vol. 7, no. 8, pp. L13–L20, 2005.

Pelletier, C. C.

J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt., vol. 10, no. 3, 2005, Paper no. 031110.

Pletz, M. W.

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Fiber enhanced Raman sensing of levofloxacin by PCF bandgap-shifting into the visible range,” Anal. Methods, vol. 10, no. 6, pp. 586–592, 2018.

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Highly sensitive broadband Raman sensing of antibiotics in step-index hollow-core photonic crystal fibers,” ACS Photon., vol. 4, no. 1, pp. 138–145, 2017.

Popp, J.

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Fiber enhanced Raman sensing of levofloxacin by PCF bandgap-shifting into the visible range,” Anal. Methods, vol. 10, no. 6, pp. 586–592, 2018.

A. Knebl, D. Yan, J. Popp, and T. Frosch, “Fiber enhanced raman gas spectroscopy,” Trends Anal. Chem., vol. 103, pp. 230–238, 2018.

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Highly sensitive broadband Raman sensing of antibiotics in step-index hollow-core photonic crystal fibers,” ACS Photon., vol. 4, no. 1, pp. 138–145, 2017.

T. Frosch, D. Yan, and J. Popp, “Ultrasensitive fiber enhanced UV resonance raman sensing of drugs,” Anal. Chem., vol. 85, no. 13, pp. 6264–6271, 2013.

Premasiri, W. R.

W. R. Premasiri, W. Ranjith, R. H. Clarke, and M. E. Womble, “Urine analysis by laser Raman spectroscopy,” Lasers Surg. Med., vol. 28, no. 4, pp. 330–334, 2011.

Ranjith, W.

W. R. Premasiri, W. Ranjith, R. H. Clarke, and M. E. Womble, “Urine analysis by laser Raman spectroscopy,” Lasers Surg. Med., vol. 28, no. 4, pp. 330–334, 2011.

Riser Taylor, S.

S. Riser Taylor and K. B. Harris, “The clinical efficacy and safety of sodium glucose cotransporter-2 inhibitors in adults with type 2 diabetes mellitus,” Pharmacotherapy, vol. 33, no. 9, pp. 984–999, 2013.

Sergo, V.

C. Beleites and V. Sergo, “HyperSpec: A package to handle hyperspectral data sets in R,” R Package Version 2.15, 2018. [Online]. Available: https://CRAN.R-project.org/package=hyperSpec

Shao, J.

J. Shaoet al., “In vivo blood glucose quantification using Raman spectroscopy,” PLoS One, vol. 7, no. 10, 2012, Paper no. e48127.

Shrivastava, A.

A. Shrivastava and V. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chronicles Young Sci., vol. 2, no. 1, pp. 21–25, 2011.

Tahara, A.

A. Taharaet al., “Characterization and comparison of sodium-glucose cotransporter 2 inhibitors in pharmacokinetics, pharmacodynamics, and pharmacologic effects,” J. Pharmacol. Sci., vol. 130, no. 3, pp. 159–169, 2016.

Thomas, K. J.

K. J. Thomaset al., “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt., vol. 10, no. 5, 2008, Paper no. 055303.

Willis, H.

H. Willis, V. J. Zichy, and P. Hendra, “The laser-raman and infra-red spectra of poly(methyl methacrylate),” Polymer, vol. 10, pp. 737–746, 1969.

Womble, M. E.

W. R. Premasiri, W. Ranjith, R. H. Clarke, and M. E. Womble, “Urine analysis by laser Raman spectroscopy,” Lasers Surg. Med., vol. 28, no. 4, pp. 330–334, 2011.

Xu, Y.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett., vol. 85, no. 22, pp. 5182–5184, 2004.

Yan, D.

D. Yanet al., “Fiber-enhanced Raman sensing of cefuroxime in urine,” Anal. Chem., vol. 90, pp. 13243–13248, 2018.

A. Knebl, D. Yan, J. Popp, and T. Frosch, “Fiber enhanced raman gas spectroscopy,” Trends Anal. Chem., vol. 103, pp. 230–238, 2018.

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Fiber enhanced Raman sensing of levofloxacin by PCF bandgap-shifting into the visible range,” Anal. Methods, vol. 10, no. 6, pp. 586–592, 2018.

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Highly sensitive broadband Raman sensing of antibiotics in step-index hollow-core photonic crystal fibers,” ACS Photon., vol. 4, no. 1, pp. 138–145, 2017.

D. Yanet al., “Fiber enhanced Raman spectroscopic analysis as a novel method for diagnosis and monitoring of diseases related to hyperbilirubinemia and hyperbiliverdinemia,” Analyst, vol. 141, no. 21, pp. 6104–6115, 2016.

T. Frosch, D. Yan, and J. Popp, “Ultrasensitive fiber enhanced UV resonance raman sensing of drugs,” Anal. Chem., vol. 85, no. 13, pp. 6264–6271, 2013.

Yang, X.

X. Yanget al., “Hollow-core photonic crystal fibers for surface-enhanced raman scattering probes,” Int. J. Opt., vol. 2011, 2011, Paper no. 754610.

Yariv, A.

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett., vol. 85, no. 22, pp. 5182–5184, 2004.

Zichy, V. J.

H. Willis, V. J. Zichy, and P. Hendra, “The laser-raman and infra-red spectra of poly(methyl methacrylate),” Polymer, vol. 10, pp. 737–746, 1969.

ACS Photon. (1)

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Highly sensitive broadband Raman sensing of antibiotics in step-index hollow-core photonic crystal fibers,” ACS Photon., vol. 4, no. 1, pp. 138–145, 2017.

Anal. Chem. (2)

D. Yanet al., “Fiber-enhanced Raman sensing of cefuroxime in urine,” Anal. Chem., vol. 90, pp. 13243–13248, 2018.

T. Frosch, D. Yan, and J. Popp, “Ultrasensitive fiber enhanced UV resonance raman sensing of drugs,” Anal. Chem., vol. 85, no. 13, pp. 6264–6271, 2013.

Anal. Methods (1)

D. Yan, J. Popp, M. W. Pletz, and T. Frosch, “Fiber enhanced Raman sensing of levofloxacin by PCF bandgap-shifting into the visible range,” Anal. Methods, vol. 10, no. 6, pp. 586–592, 2018.

Analyst (1)

D. Yanet al., “Fiber enhanced Raman spectroscopic analysis as a novel method for diagnosis and monitoring of diseases related to hyperbilirubinemia and hyperbiliverdinemia,” Analyst, vol. 141, no. 21, pp. 6104–6115, 2016.

Ann. Lab. Med. (1)

S. R. Kimet al., “Morning spot urine glucose-to-creatinine ratios predict overnight urinary glucose excretion in patients with type 2 diabetes,” Ann. Lab. Med., vol. 37, no. 1, pp. 9–17, 2017.

Appl. Phys. Lett. (1)

Y. Huang, Y. Xu, and A. Yariv, “Fabrication of functional microstructured optical fibers through a selective-filling technique,” Appl. Phys. Lett., vol. 85, no. 22, pp. 5182–5184, 2004.

Biosens. Bioelectron. (1)

U. S. Dinishet al., “Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber,” Biosens. Bioelectron., vol. 33, no. 1, pp. 293–298, 2012.

Chronicles Young Sci. (1)

A. Shrivastava and V. Gupta, “Methods for the determination of limit of detection and limit of quantitation of the analytical methods,” Chronicles Young Sci., vol. 2, no. 1, pp. 21–25, 2011.

Diabetes Technol. Therapeutics (1)

O. Lyandreset al., “Progress toward an in vivo surface-enhanced Raman spectroscopy glucose sensor,” Diabetes Technol. Therapeutics, vol. 10, no. 4, pp. 257–265, 2008.

Diabetes Therapy (1)

F. Gomez-Peraltaet al., “Practical approach to initiating SGLT2 inhibitors in type 2 diabetes,” Diabetes Therapy, vol. 8, no. 5, pp. 953–962, 2017.

Int. J. Opt. (1)

X. Yanget al., “Hollow-core photonic crystal fibers for surface-enhanced raman scattering probes,” Int. J. Opt., vol. 2011, 2011, Paper no. 754610.

J. Biomed. Opt. (1)

J. L. Lambert, C. C. Pelletier, and M. Borchert, “Glucose determination in human aqueous humor with Raman spectroscopy,” J. Biomed. Opt., vol. 10, no. 3, 2005, Paper no. 031110.

J. Opt. A, Pure Appl. Opt. (2)

K. J. Thomaset al., “Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser,” J. Opt. A, Pure Appl. Opt., vol. 10, no. 5, 2008, Paper no. 055303.

K. Nielsenet al., “Selective filling of photonic crystal fibres,” J. Opt. A, Pure Appl. Opt., vol. 7, no. 8, pp. L13–L20, 2005.

J. Pharmacol. Sci. (1)

A. Taharaet al., “Characterization and comparison of sodium-glucose cotransporter 2 inhibitors in pharmacokinetics, pharmacodynamics, and pharmacologic effects,” J. Pharmacol. Sci., vol. 130, no. 3, pp. 159–169, 2016.

J. Phys. C, Solid State Phys. (1)

Z. Iqbal, “Raman scattering and the electronically-induced phase transition in K3Fe(CN)6 at 130 K,” J. Phys. C, Solid State Phys., vol. 10, no. 18, pp. 3533–3543, 1977.

Lasers Surg. Med. (1)

W. R. Premasiri, W. Ranjith, R. H. Clarke, and M. E. Womble, “Urine analysis by laser Raman spectroscopy,” Lasers Surg. Med., vol. 28, no. 4, pp. 330–334, 2011.

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature, vol. 424, no. 6950, pp. 847–851, 2003.

Opt. Express (1)

Pharmacotherapy (1)

S. Riser Taylor and K. B. Harris, “The clinical efficacy and safety of sodium glucose cotransporter-2 inhibitors in adults with type 2 diabetes mellitus,” Pharmacotherapy, vol. 33, no. 9, pp. 984–999, 2013.

PLoS One (1)

J. Shaoet al., “In vivo blood glucose quantification using Raman spectroscopy,” PLoS One, vol. 7, no. 10, 2012, Paper no. e48127.

Polym. Int. (1)

E. Arrospideet al., “Polymers beyond standard optical fibres—Fabrication of microstructured polymer optical fibres,” Polym. Int., vol. 67, no. 9, pp. 1155–1163, 2018.

Polymer (1)

H. Willis, V. J. Zichy, and P. Hendra, “The laser-raman and infra-red spectra of poly(methyl methacrylate),” Polymer, vol. 10, pp. 737–746, 1969.

Prescriber (1)

S. Chaplin, “SGLT2 inhibitors and risk of genitourinary infections,” Prescriber, vol. 27, no. 12, pp. 26–30, 2016.

Sensors (1)

M. Azkuneet al., “U-shaped and surface functionalized polymer optical fiber probe for glucose detection,” Sensors, vol. 18, no. 1, 2018, Paper no. 34.

Trends Anal. Chem. (1)

A. Knebl, D. Yan, J. Popp, and T. Frosch, “Fiber enhanced raman gas spectroscopy,” Trends Anal. Chem., vol. 103, pp. 230–238, 2018.

Other (4)

FDA Warns About Rare Occurrences of a Serious Infection of the Genital Area With SGLT2 Inhibitors for Diabetes, US FDA, Silver Spring, MD, USA, Saf. Announc., Drug Safety, 2018.

WHO, Diabetes Mellitus, Fact Sheet N°138. Geneva, Switzerland: WHO Media Centre, 2018.

K. H. Liland, “Baseline: Baseline correction of spectra,” R Package Version 2.15, 2015. [Online]. Available: https://CRAN.R-project.org/package=baseline

C. Beleites and V. Sergo, “HyperSpec: A package to handle hyperspectral data sets in R,” R Package Version 2.15, 2018. [Online]. Available: https://CRAN.R-project.org/package=hyperSpec

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.