Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 37,
  • Issue 13,
  • pp. 2970-2980
  • (2019)

Ultra-Compact Tuneable Notch Filter Using Silicon Photonic Crystal Ring Resonator

Not Accessible

Your library or personal account may give you access

Abstract

A novel ultra-compact photonic tuneable notch filter with large bandwidth, high extinction ratio, fast response, and flat stopband is modeled and designed. It consists of a silicon-based ring resonator with one-dimensional photonic crystal superimposed onto a ring portion. Engineering the defects into the photonic crystal section allows to achieve the equalization of the bottom band of the filter response. Large bandwidth (B = 10.43 GHz) and high extinction ratio (ER = 41 dB) have been attained with a frequency response of the first-order Butterworth filter type. Continuous and wide range tunability of the central frequency (15 GHz) has been obtained by using the carrier injection technique, together with fast reconfigurability (≈1 ns) and power consumption of 47 mW. The device footprint is as very small as about 150 μm2. This performance makes the proposed device suitable for several filtering applications, such as wireless networks (5G) and telecommunication reconfigurable payloads in Telecom and Space scenario, respectively.

© 2019 IEEE

PDF Article
More Like This
Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects

Fengnian Xia, Mike Rooks, Lidija Sekaric, and Yurii Vlasov
Opt. Express 15(19) 11934-11941 (2007)

Performance improvements of a tunable bandpass microwave photonic filter based on a notch ring resonator using phase modulation with dual optical carriers

Jing Li, Pengfei Zheng, Guohua Hu, Ruohu Zhang, Binfeng Yun, and Yiping Cui
Opt. Express 27(7) 9705-9715 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.