Abstract

An approach to characterizing the microwave performance of an electro-optic Mach–Zehnder modulator (MZM) is proposed based on photonic down-conversion sampling. Through low-speed sampling, the magnitude response of the MZM at the input microwave frequency is transferred to the duplicate component in the first Nyquist frequency range, and can be measured via low-frequency detection and spectrum analysis. A proof-of-concept experiment is carried out to demonstrate the feasibility of the proposed method, where magnitude-frequency response and half-wave voltage versus frequency of a commercial MZM in the frequency range of 0–40 GHz have been accurately measured under a sampling rate of 96.9 MS/s. Both simulation and experimental results indicate that the proposed method can be implemented without any extra calibration.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Panget al., “100 Gbit/s hybrid optical fiber-wireless link in the W-band (75-110 GHz),” Opt. Express, vol. 19, no. 25, pp, 24944–24949,  2011.
  2. D. Zibaret al., “High-capacity wireless signal generation and demodulation in 75- to 110-GHz band employing all-optical OFDM,” IEEE Photon. Technol. Lett., vol. 23, no. 12, pp. 810–812,  2011.
  3. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon., vol. 1, no. 6, pp. 319–330,  2007.
  4. J. Yao, “Microwave photonics,” J. Lightw. Technol., vol. 24, no. 12, pp. 4628–4641,  2009.
  5. Z. Tang and S. Pan, “Reconfigurable microwave photonic mixer with minimized path separation and large suppression of mixing spurs,” Opt. Lett., vol. 42, no. 1, pp. 33–36,  2017.
  6. X. Zouet al., “Microwave photonic harmonic down-conversion based on cascaded four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. J., vol. 10, no. 1,  2018, Art. no. .
  7. D. J. Esmanet al., “Highly linear broadband photonic-assisted Q-band ADC,” J. Lightw. Technol., vol. 33, no. 11, pp. 2256–2262 2015.
  8. J. Mallariet al., “100 Gbps EO polymer modulator product and its characterization using a real-time digitizer,” in Proc. Opt. Fiber Commun. Conf. Exhib.,  2010, Paper OThU..
  9. C. Liet al., “Widely tunable optoelectronic oscillator using a dispersion-induced single bandpass MPF,” IEEE Photon. Technol. Lett., vol. 30, no. 1, pp. 7–10,  2018.
  10. H. Penget al., “Tunable DC-40 GHz RF generation with high side-mode suppression utilizing a dual loop Brillouin optoelectronic oscillator,” in Proc. Opt. Fiber Commun. Conf. Exhib.,  2015, Paper M3E.5.
  11. F. Heismann, S. K. Korotky, and J. J. Veselka, “Lithium niobate integrated optics: Selected contemporary devices and system applications,” in Optical Fiber Telecommunications IIIb. New York, NY, USA: Lucent Technologies, 1997, pp. 377–462.
  12. S. Oikawa, T. Kawanishi, and M. Izutsu, “Measurement of chirp parameters and halfwave voltages of Mach-Zehnder-type optical modulators by using a small signal operation,” IEEE Photon. Technol. Lett., vol. 15, no. 5, pp. 682–684,  2003.
  13. Y. Shi, L. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367,  2003.
  14. Y. Liao, H. Zhou, and Z. Meng, “Modulation efficiency of a LiNbO3 waveguide electro-optic intensity modulator operating at high microwave frequency,” Opt. Lett., vol. 34, no. 12, pp. 1822–1824,  2009.
  15. S. Zhanget al., “Calibration-free electrical spectrum analysis for microwave characterization of optical phase modulators using frequency-shifted heterodyning,” IEEE Photon. J., vol. 6, no. 4,  2014, Art. no. .
  16. H. Wanget al., “Self-calibrated and extinction-ratio-independent microwave characterization of electrooptic Mach-Zehnder modulators,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 99, pp. 948–950,  2017.
  17. H. Wanget al., “Calibration-free and bias-drift-free microwave characterization of dual-drive Mach–Zehnder modulators using heterodyne mixing,” Opt. Eng., vol. 55, no. 3, p. 031109,  2015.
  18. M. Xue, Y. Heng, Y. Heng, and S. Pan, “Ultrahigh-resolution electro-optic vector analysis for characterization of high-speed electro-optic phase modulators,” J. Lightw. Technol., vol. 36, no. 9, pp. 1644–1649,  2018.
  19. P. D. Hale and D. F. Williams, “Calibrated measurement of optoelectronic frequency response,” IEEE Trans. Microw. Theory Techn., vol. 51, no. 4, pp. 1422–1429,  2003.
  20. S. Zhanget al., “Calibration-free measurement of high-speed Mach-Zehnder modulator based on low-frequency detection,” Opt. Lett., vol. 41, no. 3, pp. 460–463,  2016.
  21. H. V. Roussell and E. I. Ackerman, “Method and apparatus for determining frequency-dependent Vπ of a Mach-Zehnder optical modulator,” U.S. Patent 7 760 343 B2, 20, 2010.
  22. R. G. Hunsperger, “Electro-optics modulator,” in Integrated Optics: Theory and Technology, 6th ed. Berlin, Germany: Springer Science+Business Media, 2009, pp. 108–125.
  23. F. Wanget al., “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotechnol., vol. 3, no. 12, pp. 738–42,  2008.

2018 (3)

X. Zouet al., “Microwave photonic harmonic down-conversion based on cascaded four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. J., vol. 10, no. 1,  2018, Art. no. .

C. Liet al., “Widely tunable optoelectronic oscillator using a dispersion-induced single bandpass MPF,” IEEE Photon. Technol. Lett., vol. 30, no. 1, pp. 7–10,  2018.

M. Xue, Y. Heng, Y. Heng, and S. Pan, “Ultrahigh-resolution electro-optic vector analysis for characterization of high-speed electro-optic phase modulators,” J. Lightw. Technol., vol. 36, no. 9, pp. 1644–1649,  2018.

2017 (2)

H. Wanget al., “Self-calibrated and extinction-ratio-independent microwave characterization of electrooptic Mach-Zehnder modulators,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 99, pp. 948–950,  2017.

Z. Tang and S. Pan, “Reconfigurable microwave photonic mixer with minimized path separation and large suppression of mixing spurs,” Opt. Lett., vol. 42, no. 1, pp. 33–36,  2017.

2016 (1)

2015 (2)

H. Wanget al., “Calibration-free and bias-drift-free microwave characterization of dual-drive Mach–Zehnder modulators using heterodyne mixing,” Opt. Eng., vol. 55, no. 3, p. 031109,  2015.

D. J. Esmanet al., “Highly linear broadband photonic-assisted Q-band ADC,” J. Lightw. Technol., vol. 33, no. 11, pp. 2256–2262 2015.

2014 (1)

S. Zhanget al., “Calibration-free electrical spectrum analysis for microwave characterization of optical phase modulators using frequency-shifted heterodyning,” IEEE Photon. J., vol. 6, no. 4,  2014, Art. no. .

2011 (2)

X. Panget al., “100 Gbit/s hybrid optical fiber-wireless link in the W-band (75-110 GHz),” Opt. Express, vol. 19, no. 25, pp, 24944–24949,  2011.

D. Zibaret al., “High-capacity wireless signal generation and demodulation in 75- to 110-GHz band employing all-optical OFDM,” IEEE Photon. Technol. Lett., vol. 23, no. 12, pp. 810–812,  2011.

2009 (2)

2008 (1)

F. Wanget al., “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotechnol., vol. 3, no. 12, pp. 738–42,  2008.

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon., vol. 1, no. 6, pp. 319–330,  2007.

2003 (3)

S. Oikawa, T. Kawanishi, and M. Izutsu, “Measurement of chirp parameters and halfwave voltages of Mach-Zehnder-type optical modulators by using a small signal operation,” IEEE Photon. Technol. Lett., vol. 15, no. 5, pp. 682–684,  2003.

Y. Shi, L. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367,  2003.

P. D. Hale and D. F. Williams, “Calibrated measurement of optoelectronic frequency response,” IEEE Trans. Microw. Theory Techn., vol. 51, no. 4, pp. 1422–1429,  2003.

Ackerman, E. I.

H. V. Roussell and E. I. Ackerman, “Method and apparatus for determining frequency-dependent Vπ of a Mach-Zehnder optical modulator,” U.S. Patent 7 760 343 B2, 20, 2010.

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon., vol. 1, no. 6, pp. 319–330,  2007.

Esman, D. J.

D. J. Esmanet al., “Highly linear broadband photonic-assisted Q-band ADC,” J. Lightw. Technol., vol. 33, no. 11, pp. 2256–2262 2015.

Hale, P. D.

P. D. Hale and D. F. Williams, “Calibrated measurement of optoelectronic frequency response,” IEEE Trans. Microw. Theory Techn., vol. 51, no. 4, pp. 1422–1429,  2003.

Heismann, F.

F. Heismann, S. K. Korotky, and J. J. Veselka, “Lithium niobate integrated optics: Selected contemporary devices and system applications,” in Optical Fiber Telecommunications IIIb. New York, NY, USA: Lucent Technologies, 1997, pp. 377–462.

Heng, Y.

M. Xue, Y. Heng, Y. Heng, and S. Pan, “Ultrahigh-resolution electro-optic vector analysis for characterization of high-speed electro-optic phase modulators,” J. Lightw. Technol., vol. 36, no. 9, pp. 1644–1649,  2018.

M. Xue, Y. Heng, Y. Heng, and S. Pan, “Ultrahigh-resolution electro-optic vector analysis for characterization of high-speed electro-optic phase modulators,” J. Lightw. Technol., vol. 36, no. 9, pp. 1644–1649,  2018.

Hunsperger, R. G.

R. G. Hunsperger, “Electro-optics modulator,” in Integrated Optics: Theory and Technology, 6th ed. Berlin, Germany: Springer Science+Business Media, 2009, pp. 108–125.

Izutsu, M.

S. Oikawa, T. Kawanishi, and M. Izutsu, “Measurement of chirp parameters and halfwave voltages of Mach-Zehnder-type optical modulators by using a small signal operation,” IEEE Photon. Technol. Lett., vol. 15, no. 5, pp. 682–684,  2003.

Kawanishi, T.

S. Oikawa, T. Kawanishi, and M. Izutsu, “Measurement of chirp parameters and halfwave voltages of Mach-Zehnder-type optical modulators by using a small signal operation,” IEEE Photon. Technol. Lett., vol. 15, no. 5, pp. 682–684,  2003.

Korotky, S. K.

F. Heismann, S. K. Korotky, and J. J. Veselka, “Lithium niobate integrated optics: Selected contemporary devices and system applications,” in Optical Fiber Telecommunications IIIb. New York, NY, USA: Lucent Technologies, 1997, pp. 377–462.

Li, C.

C. Liet al., “Widely tunable optoelectronic oscillator using a dispersion-induced single bandpass MPF,” IEEE Photon. Technol. Lett., vol. 30, no. 1, pp. 7–10,  2018.

Liao, Y.

Mallari, J.

J. Mallariet al., “100 Gbps EO polymer modulator product and its characterization using a real-time digitizer,” in Proc. Opt. Fiber Commun. Conf. Exhib.,  2010, Paper OThU..

Meng, Z.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon., vol. 1, no. 6, pp. 319–330,  2007.

Oikawa, S.

S. Oikawa, T. Kawanishi, and M. Izutsu, “Measurement of chirp parameters and halfwave voltages of Mach-Zehnder-type optical modulators by using a small signal operation,” IEEE Photon. Technol. Lett., vol. 15, no. 5, pp. 682–684,  2003.

Pan, S.

M. Xue, Y. Heng, Y. Heng, and S. Pan, “Ultrahigh-resolution electro-optic vector analysis for characterization of high-speed electro-optic phase modulators,” J. Lightw. Technol., vol. 36, no. 9, pp. 1644–1649,  2018.

Z. Tang and S. Pan, “Reconfigurable microwave photonic mixer with minimized path separation and large suppression of mixing spurs,” Opt. Lett., vol. 42, no. 1, pp. 33–36,  2017.

Pang, X.

Peng, H.

H. Penget al., “Tunable DC-40 GHz RF generation with high side-mode suppression utilizing a dual loop Brillouin optoelectronic oscillator,” in Proc. Opt. Fiber Commun. Conf. Exhib.,  2015, Paper M3E.5.

Roussell, H. V.

H. V. Roussell and E. I. Ackerman, “Method and apparatus for determining frequency-dependent Vπ of a Mach-Zehnder optical modulator,” U.S. Patent 7 760 343 B2, 20, 2010.

Shi, Y.

Y. Shi, L. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367,  2003.

Tang, Z.

Veselka, J. J.

F. Heismann, S. K. Korotky, and J. J. Veselka, “Lithium niobate integrated optics: Selected contemporary devices and system applications,” in Optical Fiber Telecommunications IIIb. New York, NY, USA: Lucent Technologies, 1997, pp. 377–462.

Wang, F.

F. Wanget al., “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotechnol., vol. 3, no. 12, pp. 738–42,  2008.

Wang, H.

H. Wanget al., “Self-calibrated and extinction-ratio-independent microwave characterization of electrooptic Mach-Zehnder modulators,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 99, pp. 948–950,  2017.

H. Wanget al., “Calibration-free and bias-drift-free microwave characterization of dual-drive Mach–Zehnder modulators using heterodyne mixing,” Opt. Eng., vol. 55, no. 3, p. 031109,  2015.

Williams, D. F.

P. D. Hale and D. F. Williams, “Calibrated measurement of optoelectronic frequency response,” IEEE Trans. Microw. Theory Techn., vol. 51, no. 4, pp. 1422–1429,  2003.

Willner, A. E.

Y. Shi, L. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367,  2003.

Xue, M.

M. Xue, Y. Heng, Y. Heng, and S. Pan, “Ultrahigh-resolution electro-optic vector analysis for characterization of high-speed electro-optic phase modulators,” J. Lightw. Technol., vol. 36, no. 9, pp. 1644–1649,  2018.

Yan, L.

Y. Shi, L. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367,  2003.

Yao, J.

J. Yao, “Microwave photonics,” J. Lightw. Technol., vol. 24, no. 12, pp. 4628–4641,  2009.

Zhang, S.

S. Zhanget al., “Calibration-free measurement of high-speed Mach-Zehnder modulator based on low-frequency detection,” Opt. Lett., vol. 41, no. 3, pp. 460–463,  2016.

S. Zhanget al., “Calibration-free electrical spectrum analysis for microwave characterization of optical phase modulators using frequency-shifted heterodyning,” IEEE Photon. J., vol. 6, no. 4,  2014, Art. no. .

Zhou, H.

Zibar, D.

D. Zibaret al., “High-capacity wireless signal generation and demodulation in 75- to 110-GHz band employing all-optical OFDM,” IEEE Photon. Technol. Lett., vol. 23, no. 12, pp. 810–812,  2011.

Zou, X.

X. Zouet al., “Microwave photonic harmonic down-conversion based on cascaded four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. J., vol. 10, no. 1,  2018, Art. no. .

IEEE Microw. Wireless Compon. Lett. (1)

H. Wanget al., “Self-calibrated and extinction-ratio-independent microwave characterization of electrooptic Mach-Zehnder modulators,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 99, pp. 948–950,  2017.

IEEE Photon. J. (2)

X. Zouet al., “Microwave photonic harmonic down-conversion based on cascaded four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. J., vol. 10, no. 1,  2018, Art. no. .

S. Zhanget al., “Calibration-free electrical spectrum analysis for microwave characterization of optical phase modulators using frequency-shifted heterodyning,” IEEE Photon. J., vol. 6, no. 4,  2014, Art. no. .

IEEE Photon. Technol. Lett. (3)

S. Oikawa, T. Kawanishi, and M. Izutsu, “Measurement of chirp parameters and halfwave voltages of Mach-Zehnder-type optical modulators by using a small signal operation,” IEEE Photon. Technol. Lett., vol. 15, no. 5, pp. 682–684,  2003.

C. Liet al., “Widely tunable optoelectronic oscillator using a dispersion-induced single bandpass MPF,” IEEE Photon. Technol. Lett., vol. 30, no. 1, pp. 7–10,  2018.

D. Zibaret al., “High-capacity wireless signal generation and demodulation in 75- to 110-GHz band employing all-optical OFDM,” IEEE Photon. Technol. Lett., vol. 23, no. 12, pp. 810–812,  2011.

IEEE Trans. Microw. Theory Techn. (1)

P. D. Hale and D. F. Williams, “Calibrated measurement of optoelectronic frequency response,” IEEE Trans. Microw. Theory Techn., vol. 51, no. 4, pp. 1422–1429,  2003.

J. Lightw. Technol. (4)

Y. Shi, L. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367,  2003.

J. Yao, “Microwave photonics,” J. Lightw. Technol., vol. 24, no. 12, pp. 4628–4641,  2009.

D. J. Esmanet al., “Highly linear broadband photonic-assisted Q-band ADC,” J. Lightw. Technol., vol. 33, no. 11, pp. 2256–2262 2015.

M. Xue, Y. Heng, Y. Heng, and S. Pan, “Ultrahigh-resolution electro-optic vector analysis for characterization of high-speed electro-optic phase modulators,” J. Lightw. Technol., vol. 36, no. 9, pp. 1644–1649,  2018.

Nature Nanotechnol. (1)

F. Wanget al., “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nature Nanotechnol., vol. 3, no. 12, pp. 738–42,  2008.

Nature Photon. (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon., vol. 1, no. 6, pp. 319–330,  2007.

Opt. Eng. (1)

H. Wanget al., “Calibration-free and bias-drift-free microwave characterization of dual-drive Mach–Zehnder modulators using heterodyne mixing,” Opt. Eng., vol. 55, no. 3, p. 031109,  2015.

Opt. Express (1)

Opt. Lett. (3)

Other (5)

J. Mallariet al., “100 Gbps EO polymer modulator product and its characterization using a real-time digitizer,” in Proc. Opt. Fiber Commun. Conf. Exhib.,  2010, Paper OThU..

H. Penget al., “Tunable DC-40 GHz RF generation with high side-mode suppression utilizing a dual loop Brillouin optoelectronic oscillator,” in Proc. Opt. Fiber Commun. Conf. Exhib.,  2015, Paper M3E.5.

F. Heismann, S. K. Korotky, and J. J. Veselka, “Lithium niobate integrated optics: Selected contemporary devices and system applications,” in Optical Fiber Telecommunications IIIb. New York, NY, USA: Lucent Technologies, 1997, pp. 377–462.

H. V. Roussell and E. I. Ackerman, “Method and apparatus for determining frequency-dependent Vπ of a Mach-Zehnder optical modulator,” U.S. Patent 7 760 343 B2, 20, 2010.

R. G. Hunsperger, “Electro-optics modulator,” in Integrated Optics: Theory and Technology, 6th ed. Berlin, Germany: Springer Science+Business Media, 2009, pp. 108–125.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.