Abstract

An electro-optical heterodyne scheme is proposed and demonstrated for magnitude- and phase-frequency response measurement of optical filters based on harmonics heterodyne and Wiener–Lee transformation. The method consists of an acousto-optic frequency shifter and a phase modulator located in a frequency-shifted heterodyne interferometer. The minimum phase-frequency response is simultaneously extracted from the measured magnitude–frequency response with the help of Kramers–Kronig relations and the Wiener–Lee transformation. As compared with the single-sideband-based or double-sideband-based methods, our method eliminates small-signal assumption and features an immunity to undesired spurious sidebands, enabling harmonic sideband sweeping with even-folded measuring frequency range. Prior to the conventional frequency-shifted heterodyne methods, the method enables simultaneous extraction of intrinsic magnitude and phase frequency responses for most optical filters by introducing the Wiener–Lee transformation. A phase-shifted fiber Bragg grating is measured for extracting the frequency responses in the proof-of-concept experiment with the frequency resolution up to 50 kHz and frequency range of 80 GHz by using a frequency-swept modulation of 20 GHz.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Singh and R. S. Kaler, “Performance evaluation and characterization of hybrid optical amplifiers for DWDM systems at ultra-narrow channel spacing,” J. Russ. Laser Res., vol. 35, no. 2, pp. 211–218,  2014.
  2. A. Mumtaz, M. K. Islam, and M. Zafrullah, “Wavelength reuse for uplink on dense wave-division multiplexing single-fiber ring for radio over fiber broadband systems with downlink signal generation in optical domain,” Opt. Eng., vol. 50, no. 10, pp. 475–480,  2011.
  3. C. K. Madsen and G. Lenz, “Optical all-pass filters for phase response design with applications for dispersion compensation,” IEEE Photon. Technol. Lett., vol. 10, no. 7, pp. 994–996,  1998.
  4. G. A. Cranch and G. M. H. Flockhart, “Tools for synthesising and characterising Bragg grating structures in optical fibres and waveguides,” J. Modern Opt., vol. 59, no. 6, pp. 493–526,  2012.
  5. B. Szafraniecet al., “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas., vol. 53, no. 1, pp. 203–215,  2004.
  6. S. Kawanishi, A. Takada, and M. Saruwatari, “Wideband frequency-response measurement of optical receivers using optical heterodyne detection,” J. Lightw. Technol., vol. 7, no. 1, pp. 92–98,  1989.
  7. Y. Q. Shi, L. S. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367,  2003.
  8. E. Simova, P. Berini, and C. P. Grover, “Characterization of wavelength-selective fiber-optic filters using a modified phase-shift method,” J. Lightw. Technol., vol. 19, no. 5, pp. 717–731,  2001.
  9. T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 13, no. 12, pp. 1334–1336,  2001.
  10. G. D. VanWiggeren, A. R. Motamedi, and D. M. Barley, “Single-scan interferometric component analyzer,” IEEE Photon. Technol. Lett., vol. 15, no. 2, pp. 263–265,  2003.
  11. M. J. Erroet al., “On the measurement of fiber Bragg grating's phase responses and the applicability of phase reconstruction methods,” IEEE Trans. Instrum. Meas., vol. 60, no. 4, pp. 1416–1422,  2011.
  12. N. Nunoya, H. Ishii, and R. Iga, “High-speed tunable distributed amplification distributed feedback (TDA-DFB) lasers,” NTT Tech. Rev., vol. 10, no. 12, pp. 1–7,  2012.
  13. Z. Z. Tang, S. L. Pan, and J. P. Yao, “A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator,” Opt. Express, vol. 20, no. 6, pp. 6555–6560,  2012.
  14. M. Sagues and A. Loayssa, “Swept optical single sideband modulation for spectral measurement applications using stimulated Brillouin scattering,” Opt. Lett., vol. 18, no. 16, pp. 17555–17568,  2010.
  15. M. Xue, S. L. Pan, and Y. J. Zhao, “Accuracy improvement of optical vector network analyzer based on single-sideband modulation,” Opt. Lett., vol. 39, no. 12, pp. 3595–3598,  2014.
  16. W. Li, W. T. Wang, L. X. Wang, and N. H. Zhu, “Optical vector network analyzer based on single-sideband modulation and segmental measurement,” IEEE Photon. J., vol. 6, no. 2,  2014, Art. no. 7901108.
  17. M. G. Wang and J. P. Yao, “Optical vector network analyzer based on unbalanced double-sideband modulation,” IEEE Photon. Technol. Lett., vol. 25, no. 8, pp. 753–756,  2013.
  18. W. Junet al., “Optical vector network analyzer based on double-sideband modulation,” Opt. Lett., vol. 42, no. 21, pp. 4426–4429,  2017.
  19. T. Qing, S. P. Li, M. Xue, W. Li, N. H. Zhu, and S. L. Pan, “Optical vector analysis based on asymmetrical optical double-sideband modulation using a dual-drive dual-parallel Mach-Zehnder modulator,” Opt. Express, vol. 25, no. 5, pp. 4665–4671,  2017.
  20. T. Qing, M. Xue, M. H. Huang, and S. L. Pan, “Measurement of optical magnitude response based on double-sideband modulation,” Opt. Lett., vol. 39, no. 21, pp. 6174–6176,  2014.
  21. H. Wanget al., “Calibration-free and bias-drift-free microwave characterization of dual-drive Mach-Zehnder modulators using heterodyne mixing,” Opt. Eng., vol. 55, no. 3,  2016, Art. no. 031109.
  22. S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, and Y. Liu, “Extinction-ratio-independent electrical method for measuring chirp parameters of Mach-Zehnder modulators using frequency-shifted heterodyne,” Opt. Lett., vol. 40, no. 12, pp. 2854–2857,  2015.
  23. A. Carballar and M. A. Muriel, “Phase reconstruction from reflectivity in fiber Bragg gratings,” J. Lightw. Technol., vol. 15, no. 8, pp. 1314–1322,  1997.
  24. P. Agarwal, “Application of measurement models to impedance spectroscopy,” J. Electrochem. Soc., vol. 142, no. 12, pp. 948–960,  1995.
  25. A. Motamedi, S. Bogdan, R. Peter, and M. B. Douglas, “Group delay reference artifact based on molecular gas absorption,” in Opt. Fiber Commun. Conf. Exhib. Tech. Dig., Anaheim, CA, USA, 2001, Paper ThC8.
  26. J. Skaar and H. E. Engan, “Phase reconstruction from reflectivity in fiber Bragg gratings,” Opt. Lett., vol. 24, no. 3, pp. 136–138,  1999.
  27. D. Pastor and J. Capmany, “Experimental demonstration of phase reconstruction from reflectivity in uniform fibre Bragg gratings using the Wiener-Lee transform,” Electron. Lett., vol. 34, no. 13, pp. 1344–1345,  1998.
  28. M. A. Muriel and A. Carballar, “Phase reconstruction from reflectivity in uniform fiber Bragg gratings,” Opt. Lett., vol. 22, no. 2, pp. 93–95,  1997.
  29. K. Al Qubaisi, H. Gevorgyan, A. Khilo, and M. S. Dahlem, “Phase response reconstruction in ring resonator filters,” in Adv. Photon., OSA Tech. Dig., 2015, Paper JM3A.26.
  30. S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, and Y. Liu, “Calibration-free electrical spectrum analysis for microwave characterization of optical phase modulators using frequency-shifted heterodyning,” IEEE Photon. J., vol. 6, no. 4,  2014, Art. no. 5501008.
  31. S. J. Zhanget al., “Self-calibrated microwave characterization of high-speed optoelectronic devices by heterodyne spectrum mapping,” J. Lightw. Technol., vol. 35, no. 10, pp. 1952–1961,  2017.

2017 (3)

2016 (1)

H. Wanget al., “Calibration-free and bias-drift-free microwave characterization of dual-drive Mach-Zehnder modulators using heterodyne mixing,” Opt. Eng., vol. 55, no. 3,  2016, Art. no. 031109.

2015 (1)

2014 (5)

M. Xue, S. L. Pan, and Y. J. Zhao, “Accuracy improvement of optical vector network analyzer based on single-sideband modulation,” Opt. Lett., vol. 39, no. 12, pp. 3595–3598,  2014.

W. Li, W. T. Wang, L. X. Wang, and N. H. Zhu, “Optical vector network analyzer based on single-sideband modulation and segmental measurement,” IEEE Photon. J., vol. 6, no. 2,  2014, Art. no. 7901108.

S. Singh and R. S. Kaler, “Performance evaluation and characterization of hybrid optical amplifiers for DWDM systems at ultra-narrow channel spacing,” J. Russ. Laser Res., vol. 35, no. 2, pp. 211–218,  2014.

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, and Y. Liu, “Calibration-free electrical spectrum analysis for microwave characterization of optical phase modulators using frequency-shifted heterodyning,” IEEE Photon. J., vol. 6, no. 4,  2014, Art. no. 5501008.

T. Qing, M. Xue, M. H. Huang, and S. L. Pan, “Measurement of optical magnitude response based on double-sideband modulation,” Opt. Lett., vol. 39, no. 21, pp. 6174–6176,  2014.

2013 (1)

M. G. Wang and J. P. Yao, “Optical vector network analyzer based on unbalanced double-sideband modulation,” IEEE Photon. Technol. Lett., vol. 25, no. 8, pp. 753–756,  2013.

2012 (3)

N. Nunoya, H. Ishii, and R. Iga, “High-speed tunable distributed amplification distributed feedback (TDA-DFB) lasers,” NTT Tech. Rev., vol. 10, no. 12, pp. 1–7,  2012.

Z. Z. Tang, S. L. Pan, and J. P. Yao, “A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator,” Opt. Express, vol. 20, no. 6, pp. 6555–6560,  2012.

G. A. Cranch and G. M. H. Flockhart, “Tools for synthesising and characterising Bragg grating structures in optical fibres and waveguides,” J. Modern Opt., vol. 59, no. 6, pp. 493–526,  2012.

2011 (2)

A. Mumtaz, M. K. Islam, and M. Zafrullah, “Wavelength reuse for uplink on dense wave-division multiplexing single-fiber ring for radio over fiber broadband systems with downlink signal generation in optical domain,” Opt. Eng., vol. 50, no. 10, pp. 475–480,  2011.

M. J. Erroet al., “On the measurement of fiber Bragg grating's phase responses and the applicability of phase reconstruction methods,” IEEE Trans. Instrum. Meas., vol. 60, no. 4, pp. 1416–1422,  2011.

2010 (1)

M. Sagues and A. Loayssa, “Swept optical single sideband modulation for spectral measurement applications using stimulated Brillouin scattering,” Opt. Lett., vol. 18, no. 16, pp. 17555–17568,  2010.

2004 (1)

B. Szafraniecet al., “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas., vol. 53, no. 1, pp. 203–215,  2004.

2003 (2)

G. D. VanWiggeren, A. R. Motamedi, and D. M. Barley, “Single-scan interferometric component analyzer,” IEEE Photon. Technol. Lett., vol. 15, no. 2, pp. 263–265,  2003.

Y. Q. Shi, L. S. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367,  2003.

2001 (2)

E. Simova, P. Berini, and C. P. Grover, “Characterization of wavelength-selective fiber-optic filters using a modified phase-shift method,” J. Lightw. Technol., vol. 19, no. 5, pp. 717–731,  2001.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 13, no. 12, pp. 1334–1336,  2001.

1999 (1)

1998 (2)

D. Pastor and J. Capmany, “Experimental demonstration of phase reconstruction from reflectivity in uniform fibre Bragg gratings using the Wiener-Lee transform,” Electron. Lett., vol. 34, no. 13, pp. 1344–1345,  1998.

C. K. Madsen and G. Lenz, “Optical all-pass filters for phase response design with applications for dispersion compensation,” IEEE Photon. Technol. Lett., vol. 10, no. 7, pp. 994–996,  1998.

1997 (2)

A. Carballar and M. A. Muriel, “Phase reconstruction from reflectivity in fiber Bragg gratings,” J. Lightw. Technol., vol. 15, no. 8, pp. 1314–1322,  1997.

M. A. Muriel and A. Carballar, “Phase reconstruction from reflectivity in uniform fiber Bragg gratings,” Opt. Lett., vol. 22, no. 2, pp. 93–95,  1997.

1995 (1)

P. Agarwal, “Application of measurement models to impedance spectroscopy,” J. Electrochem. Soc., vol. 142, no. 12, pp. 948–960,  1995.

1989 (1)

S. Kawanishi, A. Takada, and M. Saruwatari, “Wideband frequency-response measurement of optical receivers using optical heterodyne detection,” J. Lightw. Technol., vol. 7, no. 1, pp. 92–98,  1989.

Agarwal, P.

P. Agarwal, “Application of measurement models to impedance spectroscopy,” J. Electrochem. Soc., vol. 142, no. 12, pp. 948–960,  1995.

Al Qubaisi, K.

K. Al Qubaisi, H. Gevorgyan, A. Khilo, and M. S. Dahlem, “Phase response reconstruction in ring resonator filters,” in Adv. Photon., OSA Tech. Dig., 2015, Paper JM3A.26.

Barley, D. M.

G. D. VanWiggeren, A. R. Motamedi, and D. M. Barley, “Single-scan interferometric component analyzer,” IEEE Photon. Technol. Lett., vol. 15, no. 2, pp. 263–265,  2003.

Berini, P.

E. Simova, P. Berini, and C. P. Grover, “Characterization of wavelength-selective fiber-optic filters using a modified phase-shift method,” J. Lightw. Technol., vol. 19, no. 5, pp. 717–731,  2001.

Bogdan, S.

A. Motamedi, S. Bogdan, R. Peter, and M. B. Douglas, “Group delay reference artifact based on molecular gas absorption,” in Opt. Fiber Commun. Conf. Exhib. Tech. Dig., Anaheim, CA, USA, 2001, Paper ThC8.

Capmany, J.

D. Pastor and J. Capmany, “Experimental demonstration of phase reconstruction from reflectivity in uniform fibre Bragg gratings using the Wiener-Lee transform,” Electron. Lett., vol. 34, no. 13, pp. 1344–1345,  1998.

Carballar, A.

M. A. Muriel and A. Carballar, “Phase reconstruction from reflectivity in uniform fiber Bragg gratings,” Opt. Lett., vol. 22, no. 2, pp. 93–95,  1997.

A. Carballar and M. A. Muriel, “Phase reconstruction from reflectivity in fiber Bragg gratings,” J. Lightw. Technol., vol. 15, no. 8, pp. 1314–1322,  1997.

Cranch, G. A.

G. A. Cranch and G. M. H. Flockhart, “Tools for synthesising and characterising Bragg grating structures in optical fibres and waveguides,” J. Modern Opt., vol. 59, no. 6, pp. 493–526,  2012.

Dahlem, M. S.

K. Al Qubaisi, H. Gevorgyan, A. Khilo, and M. S. Dahlem, “Phase response reconstruction in ring resonator filters,” in Adv. Photon., OSA Tech. Dig., 2015, Paper JM3A.26.

Douglas, M. B.

A. Motamedi, S. Bogdan, R. Peter, and M. B. Douglas, “Group delay reference artifact based on molecular gas absorption,” in Opt. Fiber Commun. Conf. Exhib. Tech. Dig., Anaheim, CA, USA, 2001, Paper ThC8.

Engan, H. E.

Erro, M. J.

M. J. Erroet al., “On the measurement of fiber Bragg grating's phase responses and the applicability of phase reconstruction methods,” IEEE Trans. Instrum. Meas., vol. 60, no. 4, pp. 1416–1422,  2011.

Flockhart, G. M. H.

G. A. Cranch and G. M. H. Flockhart, “Tools for synthesising and characterising Bragg grating structures in optical fibres and waveguides,” J. Modern Opt., vol. 59, no. 6, pp. 493–526,  2012.

Gevorgyan, H.

K. Al Qubaisi, H. Gevorgyan, A. Khilo, and M. S. Dahlem, “Phase response reconstruction in ring resonator filters,” in Adv. Photon., OSA Tech. Dig., 2015, Paper JM3A.26.

Grover, C. P.

E. Simova, P. Berini, and C. P. Grover, “Characterization of wavelength-selective fiber-optic filters using a modified phase-shift method,” J. Lightw. Technol., vol. 19, no. 5, pp. 717–731,  2001.

Huang, M. H.

Iga, R.

N. Nunoya, H. Ishii, and R. Iga, “High-speed tunable distributed amplification distributed feedback (TDA-DFB) lasers,” NTT Tech. Rev., vol. 10, no. 12, pp. 1–7,  2012.

Ishii, H.

N. Nunoya, H. Ishii, and R. Iga, “High-speed tunable distributed amplification distributed feedback (TDA-DFB) lasers,” NTT Tech. Rev., vol. 10, no. 12, pp. 1–7,  2012.

Islam, M. K.

A. Mumtaz, M. K. Islam, and M. Zafrullah, “Wavelength reuse for uplink on dense wave-division multiplexing single-fiber ring for radio over fiber broadband systems with downlink signal generation in optical domain,” Opt. Eng., vol. 50, no. 10, pp. 475–480,  2011.

Jun, W.

Kaler, R. S.

S. Singh and R. S. Kaler, “Performance evaluation and characterization of hybrid optical amplifiers for DWDM systems at ultra-narrow channel spacing,” J. Russ. Laser Res., vol. 35, no. 2, pp. 211–218,  2014.

Kawanishi, S.

S. Kawanishi, A. Takada, and M. Saruwatari, “Wideband frequency-response measurement of optical receivers using optical heterodyne detection,” J. Lightw. Technol., vol. 7, no. 1, pp. 92–98,  1989.

Khilo, A.

K. Al Qubaisi, H. Gevorgyan, A. Khilo, and M. S. Dahlem, “Phase response reconstruction in ring resonator filters,” in Adv. Photon., OSA Tech. Dig., 2015, Paper JM3A.26.

Lenz, G.

C. K. Madsen and G. Lenz, “Optical all-pass filters for phase response design with applications for dispersion compensation,” IEEE Photon. Technol. Lett., vol. 10, no. 7, pp. 994–996,  1998.

Li, S. P.

Li, W.

T. Qing, S. P. Li, M. Xue, W. Li, N. H. Zhu, and S. L. Pan, “Optical vector analysis based on asymmetrical optical double-sideband modulation using a dual-drive dual-parallel Mach-Zehnder modulator,” Opt. Express, vol. 25, no. 5, pp. 4665–4671,  2017.

W. Li, W. T. Wang, L. X. Wang, and N. H. Zhu, “Optical vector network analyzer based on single-sideband modulation and segmental measurement,” IEEE Photon. J., vol. 6, no. 2,  2014, Art. no. 7901108.

Liu, Y.

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, and Y. Liu, “Extinction-ratio-independent electrical method for measuring chirp parameters of Mach-Zehnder modulators using frequency-shifted heterodyne,” Opt. Lett., vol. 40, no. 12, pp. 2854–2857,  2015.

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, and Y. Liu, “Calibration-free electrical spectrum analysis for microwave characterization of optical phase modulators using frequency-shifted heterodyning,” IEEE Photon. J., vol. 6, no. 4,  2014, Art. no. 5501008.

Loayssa, A.

M. Sagues and A. Loayssa, “Swept optical single sideband modulation for spectral measurement applications using stimulated Brillouin scattering,” Opt. Lett., vol. 18, no. 16, pp. 17555–17568,  2010.

Lu, R. G.

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, and Y. Liu, “Extinction-ratio-independent electrical method for measuring chirp parameters of Mach-Zehnder modulators using frequency-shifted heterodyne,” Opt. Lett., vol. 40, no. 12, pp. 2854–2857,  2015.

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, and Y. Liu, “Calibration-free electrical spectrum analysis for microwave characterization of optical phase modulators using frequency-shifted heterodyning,” IEEE Photon. J., vol. 6, no. 4,  2014, Art. no. 5501008.

Ludvigsen, H.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 13, no. 12, pp. 1334–1336,  2001.

Madsen, C. K.

C. K. Madsen and G. Lenz, “Optical all-pass filters for phase response design with applications for dispersion compensation,” IEEE Photon. Technol. Lett., vol. 10, no. 7, pp. 994–996,  1998.

Motamedi, A.

A. Motamedi, S. Bogdan, R. Peter, and M. B. Douglas, “Group delay reference artifact based on molecular gas absorption,” in Opt. Fiber Commun. Conf. Exhib. Tech. Dig., Anaheim, CA, USA, 2001, Paper ThC8.

Motamedi, A. R.

G. D. VanWiggeren, A. R. Motamedi, and D. M. Barley, “Single-scan interferometric component analyzer,” IEEE Photon. Technol. Lett., vol. 15, no. 2, pp. 263–265,  2003.

Mumtaz, A.

A. Mumtaz, M. K. Islam, and M. Zafrullah, “Wavelength reuse for uplink on dense wave-division multiplexing single-fiber ring for radio over fiber broadband systems with downlink signal generation in optical domain,” Opt. Eng., vol. 50, no. 10, pp. 475–480,  2011.

Muriel, M. A.

A. Carballar and M. A. Muriel, “Phase reconstruction from reflectivity in fiber Bragg gratings,” J. Lightw. Technol., vol. 15, no. 8, pp. 1314–1322,  1997.

M. A. Muriel and A. Carballar, “Phase reconstruction from reflectivity in uniform fiber Bragg gratings,” Opt. Lett., vol. 22, no. 2, pp. 93–95,  1997.

Niemi, T.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 13, no. 12, pp. 1334–1336,  2001.

Nunoya, N.

N. Nunoya, H. Ishii, and R. Iga, “High-speed tunable distributed amplification distributed feedback (TDA-DFB) lasers,” NTT Tech. Rev., vol. 10, no. 12, pp. 1–7,  2012.

Pan, S. L.

Pastor, D.

D. Pastor and J. Capmany, “Experimental demonstration of phase reconstruction from reflectivity in uniform fibre Bragg gratings using the Wiener-Lee transform,” Electron. Lett., vol. 34, no. 13, pp. 1344–1345,  1998.

Peter, R.

A. Motamedi, S. Bogdan, R. Peter, and M. B. Douglas, “Group delay reference artifact based on molecular gas absorption,” in Opt. Fiber Commun. Conf. Exhib. Tech. Dig., Anaheim, CA, USA, 2001, Paper ThC8.

Qing, T.

Sagues, M.

M. Sagues and A. Loayssa, “Swept optical single sideband modulation for spectral measurement applications using stimulated Brillouin scattering,” Opt. Lett., vol. 18, no. 16, pp. 17555–17568,  2010.

Saruwatari, M.

S. Kawanishi, A. Takada, and M. Saruwatari, “Wideband frequency-response measurement of optical receivers using optical heterodyne detection,” J. Lightw. Technol., vol. 7, no. 1, pp. 92–98,  1989.

Shi, Y. Q.

Y. Q. Shi, L. S. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367,  2003.

Simova, E.

E. Simova, P. Berini, and C. P. Grover, “Characterization of wavelength-selective fiber-optic filters using a modified phase-shift method,” J. Lightw. Technol., vol. 19, no. 5, pp. 717–731,  2001.

Singh, S.

S. Singh and R. S. Kaler, “Performance evaluation and characterization of hybrid optical amplifiers for DWDM systems at ultra-narrow channel spacing,” J. Russ. Laser Res., vol. 35, no. 2, pp. 211–218,  2014.

Skaar, J.

Szafraniec, B.

B. Szafraniecet al., “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas., vol. 53, no. 1, pp. 203–215,  2004.

Takada, A.

S. Kawanishi, A. Takada, and M. Saruwatari, “Wideband frequency-response measurement of optical receivers using optical heterodyne detection,” J. Lightw. Technol., vol. 7, no. 1, pp. 92–98,  1989.

Tang, Z. Z.

Uusimaa, M.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 13, no. 12, pp. 1334–1336,  2001.

VanWiggeren, G. D.

G. D. VanWiggeren, A. R. Motamedi, and D. M. Barley, “Single-scan interferometric component analyzer,” IEEE Photon. Technol. Lett., vol. 15, no. 2, pp. 263–265,  2003.

Wang, H.

H. Wanget al., “Calibration-free and bias-drift-free microwave characterization of dual-drive Mach-Zehnder modulators using heterodyne mixing,” Opt. Eng., vol. 55, no. 3,  2016, Art. no. 031109.

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, and Y. Liu, “Extinction-ratio-independent electrical method for measuring chirp parameters of Mach-Zehnder modulators using frequency-shifted heterodyne,” Opt. Lett., vol. 40, no. 12, pp. 2854–2857,  2015.

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, and Y. Liu, “Calibration-free electrical spectrum analysis for microwave characterization of optical phase modulators using frequency-shifted heterodyning,” IEEE Photon. J., vol. 6, no. 4,  2014, Art. no. 5501008.

Wang, L. X.

W. Li, W. T. Wang, L. X. Wang, and N. H. Zhu, “Optical vector network analyzer based on single-sideband modulation and segmental measurement,” IEEE Photon. J., vol. 6, no. 2,  2014, Art. no. 7901108.

Wang, M. G.

M. G. Wang and J. P. Yao, “Optical vector network analyzer based on unbalanced double-sideband modulation,” IEEE Photon. Technol. Lett., vol. 25, no. 8, pp. 753–756,  2013.

Wang, W. T.

W. Li, W. T. Wang, L. X. Wang, and N. H. Zhu, “Optical vector network analyzer based on single-sideband modulation and segmental measurement,” IEEE Photon. J., vol. 6, no. 2,  2014, Art. no. 7901108.

Willner, A. E.

Y. Q. Shi, L. S. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367,  2003.

Xue, M.

Yan, L. S.

Y. Q. Shi, L. S. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367,  2003.

Yao, J. P.

M. G. Wang and J. P. Yao, “Optical vector network analyzer based on unbalanced double-sideband modulation,” IEEE Photon. Technol. Lett., vol. 25, no. 8, pp. 753–756,  2013.

Z. Z. Tang, S. L. Pan, and J. P. Yao, “A high resolution optical vector network analyzer based on a wideband and wavelength-tunable optical single-sideband modulator,” Opt. Express, vol. 20, no. 6, pp. 6555–6560,  2012.

Zafrullah, M.

A. Mumtaz, M. K. Islam, and M. Zafrullah, “Wavelength reuse for uplink on dense wave-division multiplexing single-fiber ring for radio over fiber broadband systems with downlink signal generation in optical domain,” Opt. Eng., vol. 50, no. 10, pp. 475–480,  2011.

Zhang, S. J.

S. J. Zhanget al., “Self-calibrated microwave characterization of high-speed optoelectronic devices by heterodyne spectrum mapping,” J. Lightw. Technol., vol. 35, no. 10, pp. 1952–1961,  2017.

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, and Y. Liu, “Extinction-ratio-independent electrical method for measuring chirp parameters of Mach-Zehnder modulators using frequency-shifted heterodyne,” Opt. Lett., vol. 40, no. 12, pp. 2854–2857,  2015.

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, and Y. Liu, “Calibration-free electrical spectrum analysis for microwave characterization of optical phase modulators using frequency-shifted heterodyning,” IEEE Photon. J., vol. 6, no. 4,  2014, Art. no. 5501008.

Zhang, Y. L.

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, and Y. Liu, “Extinction-ratio-independent electrical method for measuring chirp parameters of Mach-Zehnder modulators using frequency-shifted heterodyne,” Opt. Lett., vol. 40, no. 12, pp. 2854–2857,  2015.

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, and Y. Liu, “Calibration-free electrical spectrum analysis for microwave characterization of optical phase modulators using frequency-shifted heterodyning,” IEEE Photon. J., vol. 6, no. 4,  2014, Art. no. 5501008.

Zhao, Y. J.

Zhu, N. H.

T. Qing, S. P. Li, M. Xue, W. Li, N. H. Zhu, and S. L. Pan, “Optical vector analysis based on asymmetrical optical double-sideband modulation using a dual-drive dual-parallel Mach-Zehnder modulator,” Opt. Express, vol. 25, no. 5, pp. 4665–4671,  2017.

W. Li, W. T. Wang, L. X. Wang, and N. H. Zhu, “Optical vector network analyzer based on single-sideband modulation and segmental measurement,” IEEE Photon. J., vol. 6, no. 2,  2014, Art. no. 7901108.

Zou, X. H.

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, and Y. Liu, “Extinction-ratio-independent electrical method for measuring chirp parameters of Mach-Zehnder modulators using frequency-shifted heterodyne,” Opt. Lett., vol. 40, no. 12, pp. 2854–2857,  2015.

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, and Y. Liu, “Calibration-free electrical spectrum analysis for microwave characterization of optical phase modulators using frequency-shifted heterodyning,” IEEE Photon. J., vol. 6, no. 4,  2014, Art. no. 5501008.

Electron. Lett. (1)

D. Pastor and J. Capmany, “Experimental demonstration of phase reconstruction from reflectivity in uniform fibre Bragg gratings using the Wiener-Lee transform,” Electron. Lett., vol. 34, no. 13, pp. 1344–1345,  1998.

IEEE Photon. J (1)

W. Li, W. T. Wang, L. X. Wang, and N. H. Zhu, “Optical vector network analyzer based on single-sideband modulation and segmental measurement,” IEEE Photon. J., vol. 6, no. 2,  2014, Art. no. 7901108.

IEEE Photon. J. (1)

S. J. Zhang, H. Wang, X. H. Zou, Y. L. Zhang, R. G. Lu, and Y. Liu, “Calibration-free electrical spectrum analysis for microwave characterization of optical phase modulators using frequency-shifted heterodyning,” IEEE Photon. J., vol. 6, no. 4,  2014, Art. no. 5501008.

IEEE Photon. Technol. Lett. (4)

M. G. Wang and J. P. Yao, “Optical vector network analyzer based on unbalanced double-sideband modulation,” IEEE Photon. Technol. Lett., vol. 25, no. 8, pp. 753–756,  2013.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Limitations of phase-shift method in measuring dense group delay ripple of fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 13, no. 12, pp. 1334–1336,  2001.

G. D. VanWiggeren, A. R. Motamedi, and D. M. Barley, “Single-scan interferometric component analyzer,” IEEE Photon. Technol. Lett., vol. 15, no. 2, pp. 263–265,  2003.

C. K. Madsen and G. Lenz, “Optical all-pass filters for phase response design with applications for dispersion compensation,” IEEE Photon. Technol. Lett., vol. 10, no. 7, pp. 994–996,  1998.

IEEE Trans. Instrum. Meas. (2)

B. Szafraniecet al., “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas., vol. 53, no. 1, pp. 203–215,  2004.

M. J. Erroet al., “On the measurement of fiber Bragg grating's phase responses and the applicability of phase reconstruction methods,” IEEE Trans. Instrum. Meas., vol. 60, no. 4, pp. 1416–1422,  2011.

J. Electrochem. Soc. (1)

P. Agarwal, “Application of measurement models to impedance spectroscopy,” J. Electrochem. Soc., vol. 142, no. 12, pp. 948–960,  1995.

J. Lightw. Technol. (5)

A. Carballar and M. A. Muriel, “Phase reconstruction from reflectivity in fiber Bragg gratings,” J. Lightw. Technol., vol. 15, no. 8, pp. 1314–1322,  1997.

S. J. Zhanget al., “Self-calibrated microwave characterization of high-speed optoelectronic devices by heterodyne spectrum mapping,” J. Lightw. Technol., vol. 35, no. 10, pp. 1952–1961,  2017.

S. Kawanishi, A. Takada, and M. Saruwatari, “Wideband frequency-response measurement of optical receivers using optical heterodyne detection,” J. Lightw. Technol., vol. 7, no. 1, pp. 92–98,  1989.

Y. Q. Shi, L. S. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightw. Technol., vol. 21, no. 10, pp. 2358–2367,  2003.

E. Simova, P. Berini, and C. P. Grover, “Characterization of wavelength-selective fiber-optic filters using a modified phase-shift method,” J. Lightw. Technol., vol. 19, no. 5, pp. 717–731,  2001.

J. Modern Opt. (1)

G. A. Cranch and G. M. H. Flockhart, “Tools for synthesising and characterising Bragg grating structures in optical fibres and waveguides,” J. Modern Opt., vol. 59, no. 6, pp. 493–526,  2012.

J. Russ. Laser Res. (1)

S. Singh and R. S. Kaler, “Performance evaluation and characterization of hybrid optical amplifiers for DWDM systems at ultra-narrow channel spacing,” J. Russ. Laser Res., vol. 35, no. 2, pp. 211–218,  2014.

NTT Tech. Rev. (1)

N. Nunoya, H. Ishii, and R. Iga, “High-speed tunable distributed amplification distributed feedback (TDA-DFB) lasers,” NTT Tech. Rev., vol. 10, no. 12, pp. 1–7,  2012.

Opt. Eng. (2)

A. Mumtaz, M. K. Islam, and M. Zafrullah, “Wavelength reuse for uplink on dense wave-division multiplexing single-fiber ring for radio over fiber broadband systems with downlink signal generation in optical domain,” Opt. Eng., vol. 50, no. 10, pp. 475–480,  2011.

H. Wanget al., “Calibration-free and bias-drift-free microwave characterization of dual-drive Mach-Zehnder modulators using heterodyne mixing,” Opt. Eng., vol. 55, no. 3,  2016, Art. no. 031109.

Opt. Express (2)

Opt. Lett. (7)

Other (2)

K. Al Qubaisi, H. Gevorgyan, A. Khilo, and M. S. Dahlem, “Phase response reconstruction in ring resonator filters,” in Adv. Photon., OSA Tech. Dig., 2015, Paper JM3A.26.

A. Motamedi, S. Bogdan, R. Peter, and M. B. Douglas, “Group delay reference artifact based on molecular gas absorption,” in Opt. Fiber Commun. Conf. Exhib. Tech. Dig., Anaheim, CA, USA, 2001, Paper ThC8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.