Abstract

A hardware-adaptive algorithm is proposed for phase-noise-compensated optical frequency domain reflectometry (PNC-OFDR) and the corresponding hardware system is designed to realize the real-time processing. The system not only keeps a high measurement performance with spatial resolution and measurement range of traditional PNC-OFDR, but also improves the processing efficiency, which was the main drawback in traditional PNC-OFDR. In the proof-of-concept experiment, a 7-cm spatial resolution is achieved over 100-km fiber link, which is much beyond the laser coherence length. By theoretical analysis, even at the “worst compensation point,” the signal-to-niose ratio is almost 40 dB. In the hardware-processing based system, a 7-cm spatial resolution is achieved over 37.5-km fiber link, in which the limited range is restricted by the register capacity available in the hardware we used. We believe the system is suitable for practical applications because of the real-time processing capability.

© 2018 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription