Abstract

An electrically tunable whispering gallery mode microresonator based on microstructured optical fibers (MOFs) infiltrated with negative dielectric anisotropy liquid crystals (LCs) is proposed and experimentally demonstrated. Experimental results indicate that the second radial order mode of the MOF microresonator has stronger electric field response than the first radial order mode and the resonance dip for TE polarization mode is more sensitive to the applied electric field intensity in comparison with the TM polarization mode resonance dip. The Freedericksz transition threshold of the proposed MOF microresonator is experimentally found to be about $\text{2.0}\;{\text{V}}\mu {{\text{m}}^{ - 1}}$ . The electrically tunable microresonator integrated with negative dielectric anisotropy LCs is anticipated to find potential applications in optical filtering, all-optical switching, and electrically controlled micro-optics devices.

© 2018 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription