Abstract

Visible light communication (VLC) can provide high-speed data transmission that could alleviate the pressure on the conventional radio frequency spectrum with the looming capacity crunch for digital communication systems. In this paper, we present experimental results of a VLC system with a data rate of 15.73 Gb/s after applying forward error correction coding over a 1.6 m link. Wavelength division multiplexing is utilized to efficiently modulate four wavelengths in the visible light spectrum. Four single color low-cost commercially available light emitting diodes (LEDs) are chosen as light sources. This confirms the feasibility and readiness of VLC for high-data rate communication. Orthogonal frequency division multiplexing (OFDM) with adaptive bit loading is used. The system with the available components is characterized and its parameters, such as LED driving points and OFDM signal peak-to-peak scaling factor, are optimized. To the best of our knowledge, this is the highest data rate ever reported for LED-based VLC systems.

© 2019 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription