Abstract

This paper demonstrates, for the first time to our knowledge, hierarchical learning framework for inter-domain service provisioning in software-defined elastic optical networking (EON). By using a broker-based hierarchical architecture, the broker collaborates with the domain managers to realize efficient global service provisioning without violating the privacy constrains of each domain. In the proposed hierarchical learning scheme, machine learning-based cognition agents exist in the domain managers as well as in the broker. The proposed system is experimentally demonstrated on a two-domain seven-node EON testbed for with real-time optical performance monitors (OPMs). By using over 42000 datasets collected from OPM units, the cognition agents can be trained to accurately infer the Q-factor of an unestablished or established lightpath, enabling an impairment-aware end-to-end service provisioning with an prediction Q-factor deviation less than 0.6 dB.

© 2018 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription