Abstract

We developed a high-speed and handover-free communication network for high-speed trains (HSTs) using an ultrafast and switchable wavelength-division multiplexing fiber–wireless backhaul system in the W band. We successfully transmitted approximately 20-Gb/s and 10-Gb/s signals over the switched fiber–wireless links in the downlink and uplink directions, respectively. An ultrafast radio-cell switching of less than 10 μs was experimentally demonstrated in both downlink and uplink directions. Moreover, the possibility of connecting a central station to many remote radio cells was evaluated, confirming that an uninterrupted communication network up to several tens of kilometers can be achieved for HSTs. The proposed system can overcome the current challenges in mobile networks and can provide a potential solution for the provision of advanced services to users on HSTs in future 5G and beyond networks.

© 2018 IEEE

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Wang, T. Han, Q. Li, J. Yan, X. Liu, and D. Deng, “Cell-less communications in 5G vehicular networks based on vehicle-installed access points,” IEEE Wireless Mag., vol. 24, no. 6, pp. 64–71,  2017.
  2. F. Hasegawaet al., “High-speed train communications standardization in 3GPP 5G NR,” IEEE Commun. Stand. Mag., vol. 2, no. 1, pp. 44–52,  2018.
  3. Study on Scenarios and Requirements for Next Generation Access Technologies, 3GPP, TR 38.913 (V14.2.0),  2017.
  4. Introduction to Railway Communication Systems, Report ITU-R M.2395-0,  2016.
  5. 3GPP, “Technical specification group radio access network; Mobile relay for evolved universal terrestrial radio access (E-UTRA),” 3GPP, Tech. Rep. TR 36.836,  2012.
  6. Y. Sui, J. Vihriala, A. Papadogiannis, M. Sternad, W. Yang, and T. Svensson, “Moving cells: A promising solution to boost performance for vehicular users,” IEEE Commun. Mag., vol. 51, no. 6, pp. 62–68,  2013.
  7. S. Mumtaz, J. M. Jornet, J. Aulin, W. H. Gerstacker, X. Dong, and B. Ai, “Terahertz communication for vehicular networks,” IEEE Trans. Veh. Technol., vol. 66, no. 7, pp. 5617–5625,  2017.
  8. C. Wang, A. Ghazal, B. Ai, Y. Liu, and P. Fan, “Channel measurements and models for high-speed train communication systems: A survey,” IEEE Commun. Surv. Tuts., vol. 18, no. 2, pp. 974–987,  2016.
  9. S. Buzzi and C. D'Andrea, “Cell-free massive MIMO: User-centric approach,” IEEE Wireless Commun. Lett., vol. 6, no. 6, pp. 706–709,  2017.
  10. T. Kawanishi, A. Kanno, and H. S. C. Freire, “Wired and wireless links to bridge networks: Seamlessly connecting radio and optical technologies for 5G networks,” IEEE Microw. Mag., vol. 19, no. 3, pp. 102–111,  2018.
  11. B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Radio-over-fiber-based solution to provide broadband internet access to train passengers,” IEEE Commun. Mag., vol. 45, no. 2, pp. 56–62,  2007.
  12. J. Wang, H. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Area Commun., vol. 30, no. 4, pp. 675–683,  2012.
  13. Y.-T. Hsuehet al., “A novel wireless over fiber access architecture employing moving chain cells and RoF technique for broadband wireless applications on the train environment,” in Proc. Opt. Fiber Commun. Conf., 2011, Paper no. OWT3.
  14. C. Yehet al., “Theory and technology for standard WiMAX over fiber in high speed train systems,” J. Lightw. Technol., vol. 28, no. 16, pp. 2327–2336,  2010.
  15. P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications,” IEEE Commun. Mag., vol. 53, no. 10, pp. 86–94,  2015.
  16. A. Kanno, P. T. Dat, N. Yamamoto, and T. Kawanishi, “Millimeter-wave radio-over-fiber network for linear cell systems,” J. Lightw. Technol., vol. 36, no. 2, pp. 533–540,  2018.
  17. P. T. Datet al., “High-speed and handover-free communications for high-speed trains using switched WDM fiber–wireless system,” in Proc. Opt. Fiber Commun. Conf., 2018, Paper no. Th4D.2.
  18. P. T. Datet al., “Cell-less network for handover-free communications to high-speed trains using a switched WDM fiber–wireless backhaul,” in Proc. Eur. Conf. Opt. Conf., 2018, Paper no. Th1B.6.
  19. T. Hattoriet al., “Study of a millimeter wave communications system for railway trains,” JR East Tech. Rev., no. 33, pp. 37–42, 2015.
  20. M Shiraiwaet al., “New burst-mode erbium-doped fiber amplifier with wide linearity and high output power for uplink analog radio-over-fiber signal transmission,” IEICE Trans. Electron., vol. 98, no. 8, pp. 832–839,  2015.
  21. A. Kannoet al., “Coherent radio-over-fiber and millimeter-wave radio seamless transmission system for resilient access networks,” IEEE Photon. J., vol. 4, no. 6, pp. 2196–204,  2012.
  22. Y.-K. Yeoet al., “A 448 × 448 optical cross-connect for high-performance computers and multi-terabit/s routers,” in Proc. Opt. Fiber Commun. Conf., 2010, Paper no. OMP6.
  23. A. Zaidi, R. Baldemair, V. Moles-Cases, N. He, K. Werner, and A. Cedergren, “OFDM numerology design for 5G new radio to support IoT, eMBB, and MBSFN,” IEEE Commun. Stand. Mag., vol. 2, no. 2, pp. 78–83,  2018.
  24. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458,  1998.
  25. R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microw. Theory Techn., vol. 43, no. 9, pp. 2263–2269,  1995.
  26. W-W. Choiet al., “Mobile hotspot network system for high-speed railway communications using millimeter waves,” ETRI J., vol. 38, no. 6, pp. 1052–1063,  2016.
  27. T. L. Thanh, V. N. Q. Bao, P. T. Dat, A. Kanno, and T. Kawanishi, “10-Gb/s wireless signal transmission over a seamless IM/DD fiber-MMW system at 92.5 GHz,” in Proc. IEEE Int. Conf. Commun., 2015, pp. 1364–1369.
  28. S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” J. Lightw. Technol., vol. 8, no. 11, pp. 1716–1722,  1990.
  29. H. Friss, “A note on a simple transmission formula,” Proc. IRE, vol. 34, no. 5, pp. 254–256,  1946.
  30. Specific Attenuation Model for Rain for Use in Prediction Methods, ITU-R P.838–2 Recommendation, 2003.
  31. P. T. Dat, A. Kanno, K. Inagaki, and T. Kawanishi, “High-capacity wireless backhaul network using seamless convergence of radio-over-fiber and 90-GHz millimeter-wave,” J. Lightw. Technol., vol. 32, no. 20, pp. 3910–3923,  2014.
  32. A. Hirataet al., “120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission,” IEEE Trans Microw. Theory Techn., vol. 54, no. 5, pp. 1937–1944,  2006.
  33. A. Kannoet al., “20-Gbaud QPSK optical and radio transmission using high-gain antennas for resilient access networks,” in Proc. IEEE Summer Top. Meetings, 2012, pp. 145–146.
  34. P. T. Datet al., “Energy and deployment efficiency of a millimeter-wave radio-on-radio-over-fiber system for railways,” in Proc. Opt. Fiber Commun. Conf., 2013, Paper no. JTh2A.61.
  35. A. Hrovat, G. Kandus, and T. Javornik, “A survey of radio propagation modeling for tunnels,” IEEE Commun. Surv. Tuts., vol. 16, no. 2, pp. 658–669,  2014.

2018 (4)

F. Hasegawaet al., “High-speed train communications standardization in 3GPP 5G NR,” IEEE Commun. Stand. Mag., vol. 2, no. 1, pp. 44–52,  2018.

T. Kawanishi, A. Kanno, and H. S. C. Freire, “Wired and wireless links to bridge networks: Seamlessly connecting radio and optical technologies for 5G networks,” IEEE Microw. Mag., vol. 19, no. 3, pp. 102–111,  2018.

A. Kanno, P. T. Dat, N. Yamamoto, and T. Kawanishi, “Millimeter-wave radio-over-fiber network for linear cell systems,” J. Lightw. Technol., vol. 36, no. 2, pp. 533–540,  2018.

A. Zaidi, R. Baldemair, V. Moles-Cases, N. He, K. Werner, and A. Cedergren, “OFDM numerology design for 5G new radio to support IoT, eMBB, and MBSFN,” IEEE Commun. Stand. Mag., vol. 2, no. 2, pp. 78–83,  2018.

2017 (4)

Study on Scenarios and Requirements for Next Generation Access Technologies, 3GPP, TR 38.913 (V14.2.0),  2017.

S. Mumtaz, J. M. Jornet, J. Aulin, W. H. Gerstacker, X. Dong, and B. Ai, “Terahertz communication for vehicular networks,” IEEE Trans. Veh. Technol., vol. 66, no. 7, pp. 5617–5625,  2017.

L. Wang, T. Han, Q. Li, J. Yan, X. Liu, and D. Deng, “Cell-less communications in 5G vehicular networks based on vehicle-installed access points,” IEEE Wireless Mag., vol. 24, no. 6, pp. 64–71,  2017.

S. Buzzi and C. D'Andrea, “Cell-free massive MIMO: User-centric approach,” IEEE Wireless Commun. Lett., vol. 6, no. 6, pp. 706–709,  2017.

2016 (3)

C. Wang, A. Ghazal, B. Ai, Y. Liu, and P. Fan, “Channel measurements and models for high-speed train communication systems: A survey,” IEEE Commun. Surv. Tuts., vol. 18, no. 2, pp. 974–987,  2016.

Introduction to Railway Communication Systems, Report ITU-R M.2395-0,  2016.

W-W. Choiet al., “Mobile hotspot network system for high-speed railway communications using millimeter waves,” ETRI J., vol. 38, no. 6, pp. 1052–1063,  2016.

2015 (3)

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications,” IEEE Commun. Mag., vol. 53, no. 10, pp. 86–94,  2015.

T. Hattoriet al., “Study of a millimeter wave communications system for railway trains,” JR East Tech. Rev., no. 33, pp. 37–42, 2015.

M Shiraiwaet al., “New burst-mode erbium-doped fiber amplifier with wide linearity and high output power for uplink analog radio-over-fiber signal transmission,” IEICE Trans. Electron., vol. 98, no. 8, pp. 832–839,  2015.

2014 (2)

P. T. Dat, A. Kanno, K. Inagaki, and T. Kawanishi, “High-capacity wireless backhaul network using seamless convergence of radio-over-fiber and 90-GHz millimeter-wave,” J. Lightw. Technol., vol. 32, no. 20, pp. 3910–3923,  2014.

A. Hrovat, G. Kandus, and T. Javornik, “A survey of radio propagation modeling for tunnels,” IEEE Commun. Surv. Tuts., vol. 16, no. 2, pp. 658–669,  2014.

2013 (1)

Y. Sui, J. Vihriala, A. Papadogiannis, M. Sternad, W. Yang, and T. Svensson, “Moving cells: A promising solution to boost performance for vehicular users,” IEEE Commun. Mag., vol. 51, no. 6, pp. 62–68,  2013.

2012 (2)

A. Kannoet al., “Coherent radio-over-fiber and millimeter-wave radio seamless transmission system for resilient access networks,” IEEE Photon. J., vol. 4, no. 6, pp. 2196–204,  2012.

J. Wang, H. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Area Commun., vol. 30, no. 4, pp. 675–683,  2012.

2010 (1)

C. Yehet al., “Theory and technology for standard WiMAX over fiber in high speed train systems,” J. Lightw. Technol., vol. 28, no. 16, pp. 2327–2336,  2010.

2007 (1)

B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Radio-over-fiber-based solution to provide broadband internet access to train passengers,” IEEE Commun. Mag., vol. 45, no. 2, pp. 56–62,  2007.

2006 (1)

A. Hirataet al., “120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission,” IEEE Trans Microw. Theory Techn., vol. 54, no. 5, pp. 1937–1944,  2006.

2003 (1)

Specific Attenuation Model for Rain for Use in Prediction Methods, ITU-R P.838–2 Recommendation, 2003.

1998 (1)

M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458,  1998.

1995 (1)

R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microw. Theory Techn., vol. 43, no. 9, pp. 2263–2269,  1995.

1990 (1)

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” J. Lightw. Technol., vol. 8, no. 11, pp. 1716–1722,  1990.

1946 (1)

H. Friss, “A note on a simple transmission formula,” Proc. IRE, vol. 34, no. 5, pp. 254–256,  1946.

Ai,

S. Mumtaz, J. M. Jornet, J. Aulin, W. H. Gerstacker, X. Dong, and B. Ai, “Terahertz communication for vehicular networks,” IEEE Trans. Veh. Technol., vol. 66, no. 7, pp. 5617–5625,  2017.

C. Wang, A. Ghazal, B. Ai, Y. Liu, and P. Fan, “Channel measurements and models for high-speed train communication systems: A survey,” IEEE Commun. Surv. Tuts., vol. 18, no. 2, pp. 974–987,  2016.

Alamouti, M.

M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458,  1998.

Aulin,

S. Mumtaz, J. M. Jornet, J. Aulin, W. H. Gerstacker, X. Dong, and B. Ai, “Terahertz communication for vehicular networks,” IEEE Trans. Veh. Technol., vol. 66, no. 7, pp. 5617–5625,  2017.

Baldemair,

A. Zaidi, R. Baldemair, V. Moles-Cases, N. He, K. Werner, and A. Cedergren, “OFDM numerology design for 5G new radio to support IoT, eMBB, and MBSFN,” IEEE Commun. Stand. Mag., vol. 2, no. 2, pp. 78–83,  2018.

Bao,

T. L. Thanh, V. N. Q. Bao, P. T. Dat, A. Kanno, and T. Kawanishi, “10-Gb/s wireless signal transmission over a seamless IM/DD fiber-MMW system at 92.5 GHz,” in Proc. IEEE Int. Conf. Commun., 2015, pp. 1364–1369.

Buzzi, S.

S. Buzzi and C. D'Andrea, “Cell-free massive MIMO: User-centric approach,” IEEE Wireless Commun. Lett., vol. 6, no. 6, pp. 706–709,  2017.

Cedergren,

A. Zaidi, R. Baldemair, V. Moles-Cases, N. He, K. Werner, and A. Cedergren, “OFDM numerology design for 5G new radio to support IoT, eMBB, and MBSFN,” IEEE Commun. Stand. Mag., vol. 2, no. 2, pp. 78–83,  2018.

Choi, W-W.

W-W. Choiet al., “Mobile hotspot network system for high-speed railway communications using millimeter waves,” ETRI J., vol. 38, no. 6, pp. 1052–1063,  2016.

Colle,

B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Radio-over-fiber-based solution to provide broadband internet access to train passengers,” IEEE Commun. Mag., vol. 45, no. 2, pp. 56–62,  2007.

D'Andrea,

S. Buzzi and C. D'Andrea, “Cell-free massive MIMO: User-centric approach,” IEEE Wireless Commun. Lett., vol. 6, no. 6, pp. 706–709,  2017.

Dat,

A. Kanno, P. T. Dat, N. Yamamoto, and T. Kawanishi, “Millimeter-wave radio-over-fiber network for linear cell systems,” J. Lightw. Technol., vol. 36, no. 2, pp. 533–540,  2018.

T. L. Thanh, V. N. Q. Bao, P. T. Dat, A. Kanno, and T. Kawanishi, “10-Gb/s wireless signal transmission over a seamless IM/DD fiber-MMW system at 92.5 GHz,” in Proc. IEEE Int. Conf. Commun., 2015, pp. 1364–1369.

Dat, P. T.

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications,” IEEE Commun. Mag., vol. 53, no. 10, pp. 86–94,  2015.

P. T. Dat, A. Kanno, K. Inagaki, and T. Kawanishi, “High-capacity wireless backhaul network using seamless convergence of radio-over-fiber and 90-GHz millimeter-wave,” J. Lightw. Technol., vol. 32, no. 20, pp. 3910–3923,  2014.

P. T. Datet al., “Energy and deployment efficiency of a millimeter-wave radio-on-radio-over-fiber system for railways,” in Proc. Opt. Fiber Commun. Conf., 2013, Paper no. JTh2A.61.

P. T. Datet al., “High-speed and handover-free communications for high-speed trains using switched WDM fiber–wireless system,” in Proc. Opt. Fiber Commun. Conf., 2018, Paper no. Th4D.2.

P. T. Datet al., “Cell-less network for handover-free communications to high-speed trains using a switched WDM fiber–wireless backhaul,” in Proc. Eur. Conf. Opt. Conf., 2018, Paper no. Th1B.6.

Demeester,

B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Radio-over-fiber-based solution to provide broadband internet access to train passengers,” IEEE Commun. Mag., vol. 45, no. 2, pp. 56–62,  2007.

Deng,

L. Wang, T. Han, Q. Li, J. Yan, X. Liu, and D. Deng, “Cell-less communications in 5G vehicular networks based on vehicle-installed access points,” IEEE Wireless Mag., vol. 24, no. 6, pp. 64–71,  2017.

Dong,

S. Mumtaz, J. M. Jornet, J. Aulin, W. H. Gerstacker, X. Dong, and B. Ai, “Terahertz communication for vehicular networks,” IEEE Trans. Veh. Technol., vol. 66, no. 7, pp. 5617–5625,  2017.

Edagawa,

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” J. Lightw. Technol., vol. 8, no. 11, pp. 1716–1722,  1990.

Fan,

C. Wang, A. Ghazal, B. Ai, Y. Liu, and P. Fan, “Channel measurements and models for high-speed train communication systems: A survey,” IEEE Commun. Surv. Tuts., vol. 18, no. 2, pp. 974–987,  2016.

Freire,

T. Kawanishi, A. Kanno, and H. S. C. Freire, “Wired and wireless links to bridge networks: Seamlessly connecting radio and optical technologies for 5G networks,” IEEE Microw. Mag., vol. 19, no. 3, pp. 102–111,  2018.

Friss, H.

H. Friss, “A note on a simple transmission formula,” Proc. IRE, vol. 34, no. 5, pp. 254–256,  1946.

Gerstacker,

S. Mumtaz, J. M. Jornet, J. Aulin, W. H. Gerstacker, X. Dong, and B. Ai, “Terahertz communication for vehicular networks,” IEEE Trans. Veh. Technol., vol. 66, no. 7, pp. 5617–5625,  2017.

Ghazal,

C. Wang, A. Ghazal, B. Ai, Y. Liu, and P. Fan, “Channel measurements and models for high-speed train communication systems: A survey,” IEEE Commun. Surv. Tuts., vol. 18, no. 2, pp. 974–987,  2016.

Gomes,

J. Wang, H. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Area Commun., vol. 30, no. 4, pp. 675–683,  2012.

Han,

L. Wang, T. Han, Q. Li, J. Yan, X. Liu, and D. Deng, “Cell-less communications in 5G vehicular networks based on vehicle-installed access points,” IEEE Wireless Mag., vol. 24, no. 6, pp. 64–71,  2017.

Hasegawa, F.

F. Hasegawaet al., “High-speed train communications standardization in 3GPP 5G NR,” IEEE Commun. Stand. Mag., vol. 2, no. 1, pp. 44–52,  2018.

Hattori, T.

T. Hattoriet al., “Study of a millimeter wave communications system for railway trains,” JR East Tech. Rev., no. 33, pp. 37–42, 2015.

He,

A. Zaidi, R. Baldemair, V. Moles-Cases, N. He, K. Werner, and A. Cedergren, “OFDM numerology design for 5G new radio to support IoT, eMBB, and MBSFN,” IEEE Commun. Stand. Mag., vol. 2, no. 2, pp. 78–83,  2018.

Heidemann,

R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microw. Theory Techn., vol. 43, no. 9, pp. 2263–2269,  1995.

Hirata, A.

A. Hirataet al., “120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission,” IEEE Trans Microw. Theory Techn., vol. 54, no. 5, pp. 1937–1944,  2006.

Hofstetter, R.

R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microw. Theory Techn., vol. 43, no. 9, pp. 2263–2269,  1995.

Hrovat, A.

A. Hrovat, G. Kandus, and T. Javornik, “A survey of radio propagation modeling for tunnels,” IEEE Commun. Surv. Tuts., vol. 16, no. 2, pp. 658–669,  2014.

Hsueh, Y.-T.

Y.-T. Hsuehet al., “A novel wireless over fiber access architecture employing moving chain cells and RoF technique for broadband wireless applications on the train environment,” in Proc. Opt. Fiber Commun. Conf., 2011, Paper no. OWT3.

Inagaki,

P. T. Dat, A. Kanno, K. Inagaki, and T. Kawanishi, “High-capacity wireless backhaul network using seamless convergence of radio-over-fiber and 90-GHz millimeter-wave,” J. Lightw. Technol., vol. 32, no. 20, pp. 3910–3923,  2014.

Javornik,

A. Hrovat, G. Kandus, and T. Javornik, “A survey of radio propagation modeling for tunnels,” IEEE Commun. Surv. Tuts., vol. 16, no. 2, pp. 658–669,  2014.

Jornet,

S. Mumtaz, J. M. Jornet, J. Aulin, W. H. Gerstacker, X. Dong, and B. Ai, “Terahertz communication for vehicular networks,” IEEE Trans. Veh. Technol., vol. 66, no. 7, pp. 5617–5625,  2017.

Kandus,

A. Hrovat, G. Kandus, and T. Javornik, “A survey of radio propagation modeling for tunnels,” IEEE Commun. Surv. Tuts., vol. 16, no. 2, pp. 658–669,  2014.

Kanno,

T. Kawanishi, A. Kanno, and H. S. C. Freire, “Wired and wireless links to bridge networks: Seamlessly connecting radio and optical technologies for 5G networks,” IEEE Microw. Mag., vol. 19, no. 3, pp. 102–111,  2018.

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications,” IEEE Commun. Mag., vol. 53, no. 10, pp. 86–94,  2015.

P. T. Dat, A. Kanno, K. Inagaki, and T. Kawanishi, “High-capacity wireless backhaul network using seamless convergence of radio-over-fiber and 90-GHz millimeter-wave,” J. Lightw. Technol., vol. 32, no. 20, pp. 3910–3923,  2014.

T. L. Thanh, V. N. Q. Bao, P. T. Dat, A. Kanno, and T. Kawanishi, “10-Gb/s wireless signal transmission over a seamless IM/DD fiber-MMW system at 92.5 GHz,” in Proc. IEEE Int. Conf. Commun., 2015, pp. 1364–1369.

Kanno, A.

A. Kanno, P. T. Dat, N. Yamamoto, and T. Kawanishi, “Millimeter-wave radio-over-fiber network for linear cell systems,” J. Lightw. Technol., vol. 36, no. 2, pp. 533–540,  2018.

A. Kannoet al., “Coherent radio-over-fiber and millimeter-wave radio seamless transmission system for resilient access networks,” IEEE Photon. J., vol. 4, no. 6, pp. 2196–204,  2012.

A. Kannoet al., “20-Gbaud QPSK optical and radio transmission using high-gain antennas for resilient access networks,” in Proc. IEEE Summer Top. Meetings, 2012, pp. 145–146.

Kawanishi,

A. Kanno, P. T. Dat, N. Yamamoto, and T. Kawanishi, “Millimeter-wave radio-over-fiber network for linear cell systems,” J. Lightw. Technol., vol. 36, no. 2, pp. 533–540,  2018.

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications,” IEEE Commun. Mag., vol. 53, no. 10, pp. 86–94,  2015.

P. T. Dat, A. Kanno, K. Inagaki, and T. Kawanishi, “High-capacity wireless backhaul network using seamless convergence of radio-over-fiber and 90-GHz millimeter-wave,” J. Lightw. Technol., vol. 32, no. 20, pp. 3910–3923,  2014.

T. L. Thanh, V. N. Q. Bao, P. T. Dat, A. Kanno, and T. Kawanishi, “10-Gb/s wireless signal transmission over a seamless IM/DD fiber-MMW system at 92.5 GHz,” in Proc. IEEE Int. Conf. Commun., 2015, pp. 1364–1369.

Kawanishi, T.

T. Kawanishi, A. Kanno, and H. S. C. Freire, “Wired and wireless links to bridge networks: Seamlessly connecting radio and optical technologies for 5G networks,” IEEE Microw. Mag., vol. 19, no. 3, pp. 102–111,  2018.

Lannoo,

B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Radio-over-fiber-based solution to provide broadband internet access to train passengers,” IEEE Commun. Mag., vol. 45, no. 2, pp. 56–62,  2007.

Li,

L. Wang, T. Han, Q. Li, J. Yan, X. Liu, and D. Deng, “Cell-less communications in 5G vehicular networks based on vehicle-installed access points,” IEEE Wireless Mag., vol. 24, no. 6, pp. 64–71,  2017.

Liu,

L. Wang, T. Han, Q. Li, J. Yan, X. Liu, and D. Deng, “Cell-less communications in 5G vehicular networks based on vehicle-installed access points,” IEEE Wireless Mag., vol. 24, no. 6, pp. 64–71,  2017.

C. Wang, A. Ghazal, B. Ai, Y. Liu, and P. Fan, “Channel measurements and models for high-speed train communication systems: A survey,” IEEE Commun. Surv. Tuts., vol. 18, no. 2, pp. 974–987,  2016.

Moles-Cases,

A. Zaidi, R. Baldemair, V. Moles-Cases, N. He, K. Werner, and A. Cedergren, “OFDM numerology design for 5G new radio to support IoT, eMBB, and MBSFN,” IEEE Commun. Stand. Mag., vol. 2, no. 2, pp. 78–83,  2018.

Mumtaz, S.

S. Mumtaz, J. M. Jornet, J. Aulin, W. H. Gerstacker, X. Dong, and B. Ai, “Terahertz communication for vehicular networks,” IEEE Trans. Veh. Technol., vol. 66, no. 7, pp. 5617–5625,  2017.

Papadogiannis,

Y. Sui, J. Vihriala, A. Papadogiannis, M. Sternad, W. Yang, and T. Svensson, “Moving cells: A promising solution to boost performance for vehicular users,” IEEE Commun. Mag., vol. 51, no. 6, pp. 62–68,  2013.

Pickavet,

B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Radio-over-fiber-based solution to provide broadband internet access to train passengers,” IEEE Commun. Mag., vol. 45, no. 2, pp. 56–62,  2007.

Schmuck,

R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microw. Theory Techn., vol. 43, no. 9, pp. 2263–2269,  1995.

Shiraiwa, M

M Shiraiwaet al., “New burst-mode erbium-doped fiber amplifier with wide linearity and high output power for uplink analog radio-over-fiber signal transmission,” IEICE Trans. Electron., vol. 98, no. 8, pp. 832–839,  2015.

Sternad,

Y. Sui, J. Vihriala, A. Papadogiannis, M. Sternad, W. Yang, and T. Svensson, “Moving cells: A promising solution to boost performance for vehicular users,” IEEE Commun. Mag., vol. 51, no. 6, pp. 62–68,  2013.

Sui, Y.

Y. Sui, J. Vihriala, A. Papadogiannis, M. Sternad, W. Yang, and T. Svensson, “Moving cells: A promising solution to boost performance for vehicular users,” IEEE Commun. Mag., vol. 51, no. 6, pp. 62–68,  2013.

Svensson,

Y. Sui, J. Vihriala, A. Papadogiannis, M. Sternad, W. Yang, and T. Svensson, “Moving cells: A promising solution to boost performance for vehicular users,” IEEE Commun. Mag., vol. 51, no. 6, pp. 62–68,  2013.

Taga,

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” J. Lightw. Technol., vol. 8, no. 11, pp. 1716–1722,  1990.

Thanh, T. L.

T. L. Thanh, V. N. Q. Bao, P. T. Dat, A. Kanno, and T. Kawanishi, “10-Gb/s wireless signal transmission over a seamless IM/DD fiber-MMW system at 92.5 GHz,” in Proc. IEEE Int. Conf. Commun., 2015, pp. 1364–1369.

Vihriala,

Y. Sui, J. Vihriala, A. Papadogiannis, M. Sternad, W. Yang, and T. Svensson, “Moving cells: A promising solution to boost performance for vehicular users,” IEEE Commun. Mag., vol. 51, no. 6, pp. 62–68,  2013.

Wakabayashi,

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” J. Lightw. Technol., vol. 8, no. 11, pp. 1716–1722,  1990.

Wang, C.

C. Wang, A. Ghazal, B. Ai, Y. Liu, and P. Fan, “Channel measurements and models for high-speed train communication systems: A survey,” IEEE Commun. Surv. Tuts., vol. 18, no. 2, pp. 974–987,  2016.

Wang, J.

J. Wang, H. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Area Commun., vol. 30, no. 4, pp. 675–683,  2012.

Wang, L.

L. Wang, T. Han, Q. Li, J. Yan, X. Liu, and D. Deng, “Cell-less communications in 5G vehicular networks based on vehicle-installed access points,” IEEE Wireless Mag., vol. 24, no. 6, pp. 64–71,  2017.

Werner,

A. Zaidi, R. Baldemair, V. Moles-Cases, N. He, K. Werner, and A. Cedergren, “OFDM numerology design for 5G new radio to support IoT, eMBB, and MBSFN,” IEEE Commun. Stand. Mag., vol. 2, no. 2, pp. 78–83,  2018.

Yamamoto,

A. Kanno, P. T. Dat, N. Yamamoto, and T. Kawanishi, “Millimeter-wave radio-over-fiber network for linear cell systems,” J. Lightw. Technol., vol. 36, no. 2, pp. 533–540,  2018.

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications,” IEEE Commun. Mag., vol. 53, no. 10, pp. 86–94,  2015.

Yamamoto, S.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” J. Lightw. Technol., vol. 8, no. 11, pp. 1716–1722,  1990.

Yan,

L. Wang, T. Han, Q. Li, J. Yan, X. Liu, and D. Deng, “Cell-less communications in 5G vehicular networks based on vehicle-installed access points,” IEEE Wireless Mag., vol. 24, no. 6, pp. 64–71,  2017.

Yang,

Y. Sui, J. Vihriala, A. Papadogiannis, M. Sternad, W. Yang, and T. Svensson, “Moving cells: A promising solution to boost performance for vehicular users,” IEEE Commun. Mag., vol. 51, no. 6, pp. 62–68,  2013.

Yeh, C.

C. Yehet al., “Theory and technology for standard WiMAX over fiber in high speed train systems,” J. Lightw. Technol., vol. 28, no. 16, pp. 2327–2336,  2010.

Yeo, Y.-K.

Y.-K. Yeoet al., “A 448 × 448 optical cross-connect for high-performance computers and multi-terabit/s routers,” in Proc. Opt. Fiber Commun. Conf., 2010, Paper no. OMP6.

Yoshida,

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” J. Lightw. Technol., vol. 8, no. 11, pp. 1716–1722,  1990.

Zaidi, A.

A. Zaidi, R. Baldemair, V. Moles-Cases, N. He, K. Werner, and A. Cedergren, “OFDM numerology design for 5G new radio to support IoT, eMBB, and MBSFN,” IEEE Commun. Stand. Mag., vol. 2, no. 2, pp. 78–83,  2018.

Zhu,

J. Wang, H. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Area Commun., vol. 30, no. 4, pp. 675–683,  2012.

ETRI J. (1)

W-W. Choiet al., “Mobile hotspot network system for high-speed railway communications using millimeter waves,” ETRI J., vol. 38, no. 6, pp. 1052–1063,  2016.

IEEE Commun. Mag. (3)

Y. Sui, J. Vihriala, A. Papadogiannis, M. Sternad, W. Yang, and T. Svensson, “Moving cells: A promising solution to boost performance for vehicular users,” IEEE Commun. Mag., vol. 51, no. 6, pp. 62–68,  2013.

B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Radio-over-fiber-based solution to provide broadband internet access to train passengers,” IEEE Commun. Mag., vol. 45, no. 2, pp. 56–62,  2007.

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications,” IEEE Commun. Mag., vol. 53, no. 10, pp. 86–94,  2015.

IEEE Commun. Stand. Mag. (2)

F. Hasegawaet al., “High-speed train communications standardization in 3GPP 5G NR,” IEEE Commun. Stand. Mag., vol. 2, no. 1, pp. 44–52,  2018.

A. Zaidi, R. Baldemair, V. Moles-Cases, N. He, K. Werner, and A. Cedergren, “OFDM numerology design for 5G new radio to support IoT, eMBB, and MBSFN,” IEEE Commun. Stand. Mag., vol. 2, no. 2, pp. 78–83,  2018.

IEEE Commun. Surv. Tuts. (2)

A. Hrovat, G. Kandus, and T. Javornik, “A survey of radio propagation modeling for tunnels,” IEEE Commun. Surv. Tuts., vol. 16, no. 2, pp. 658–669,  2014.

C. Wang, A. Ghazal, B. Ai, Y. Liu, and P. Fan, “Channel measurements and models for high-speed train communication systems: A survey,” IEEE Commun. Surv. Tuts., vol. 18, no. 2, pp. 974–987,  2016.

IEEE J. Sel. Area Commun. (1)

J. Wang, H. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Area Commun., vol. 30, no. 4, pp. 675–683,  2012.

IEEE J. Sel. Areas Commun. (1)

M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458,  1998.

IEEE Microw. Mag. (1)

T. Kawanishi, A. Kanno, and H. S. C. Freire, “Wired and wireless links to bridge networks: Seamlessly connecting radio and optical technologies for 5G networks,” IEEE Microw. Mag., vol. 19, no. 3, pp. 102–111,  2018.

IEEE Photon. J. (1)

A. Kannoet al., “Coherent radio-over-fiber and millimeter-wave radio seamless transmission system for resilient access networks,” IEEE Photon. J., vol. 4, no. 6, pp. 2196–204,  2012.

IEEE Trans Microw. Theory Techn. (1)

A. Hirataet al., “120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission,” IEEE Trans Microw. Theory Techn., vol. 54, no. 5, pp. 1937–1944,  2006.

IEEE Trans. Microw. Theory Techn. (1)

R. Hofstetter, H. Schmuck, and R. Heidemann, “Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation,” IEEE Trans. Microw. Theory Techn., vol. 43, no. 9, pp. 2263–2269,  1995.

IEEE Trans. Veh. Technol. (1)

S. Mumtaz, J. M. Jornet, J. Aulin, W. H. Gerstacker, X. Dong, and B. Ai, “Terahertz communication for vehicular networks,” IEEE Trans. Veh. Technol., vol. 66, no. 7, pp. 5617–5625,  2017.

IEEE Wireless Commun. Lett. (1)

S. Buzzi and C. D'Andrea, “Cell-free massive MIMO: User-centric approach,” IEEE Wireless Commun. Lett., vol. 6, no. 6, pp. 706–709,  2017.

IEEE Wireless Mag. (1)

L. Wang, T. Han, Q. Li, J. Yan, X. Liu, and D. Deng, “Cell-less communications in 5G vehicular networks based on vehicle-installed access points,” IEEE Wireless Mag., vol. 24, no. 6, pp. 64–71,  2017.

IEICE Trans. Electron. (1)

M Shiraiwaet al., “New burst-mode erbium-doped fiber amplifier with wide linearity and high output power for uplink analog radio-over-fiber signal transmission,” IEICE Trans. Electron., vol. 98, no. 8, pp. 832–839,  2015.

Introduction to Railway Communication Systems (1)

Introduction to Railway Communication Systems, Report ITU-R M.2395-0,  2016.

J. Lightw. Technol. (4)

A. Kanno, P. T. Dat, N. Yamamoto, and T. Kawanishi, “Millimeter-wave radio-over-fiber network for linear cell systems,” J. Lightw. Technol., vol. 36, no. 2, pp. 533–540,  2018.

P. T. Dat, A. Kanno, K. Inagaki, and T. Kawanishi, “High-capacity wireless backhaul network using seamless convergence of radio-over-fiber and 90-GHz millimeter-wave,” J. Lightw. Technol., vol. 32, no. 20, pp. 3910–3923,  2014.

S. Yamamoto, N. Edagawa, H. Taga, Y. Yoshida, and H. Wakabayashi, “Analysis of laser phase noise to intensity noise conversion by chromatic dispersion in intensity modulation and direct detection optical-fiber transmission,” J. Lightw. Technol., vol. 8, no. 11, pp. 1716–1722,  1990.

C. Yehet al., “Theory and technology for standard WiMAX over fiber in high speed train systems,” J. Lightw. Technol., vol. 28, no. 16, pp. 2327–2336,  2010.

JR East Tech. Rev. (1)

T. Hattoriet al., “Study of a millimeter wave communications system for railway trains,” JR East Tech. Rev., no. 33, pp. 37–42, 2015.

Proc. IRE (1)

H. Friss, “A note on a simple transmission formula,” Proc. IRE, vol. 34, no. 5, pp. 254–256,  1946.

Specific Attenuation Model for Rain for Use in Prediction Methods (1)

Specific Attenuation Model for Rain for Use in Prediction Methods, ITU-R P.838–2 Recommendation, 2003.

Study on Scenarios and Requirements for Next Generation Access Technologies (1)

Study on Scenarios and Requirements for Next Generation Access Technologies, 3GPP, TR 38.913 (V14.2.0),  2017.

Other (8)

3GPP, “Technical specification group radio access network; Mobile relay for evolved universal terrestrial radio access (E-UTRA),” 3GPP, Tech. Rep. TR 36.836,  2012.

P. T. Datet al., “High-speed and handover-free communications for high-speed trains using switched WDM fiber–wireless system,” in Proc. Opt. Fiber Commun. Conf., 2018, Paper no. Th4D.2.

P. T. Datet al., “Cell-less network for handover-free communications to high-speed trains using a switched WDM fiber–wireless backhaul,” in Proc. Eur. Conf. Opt. Conf., 2018, Paper no. Th1B.6.

Y.-T. Hsuehet al., “A novel wireless over fiber access architecture employing moving chain cells and RoF technique for broadband wireless applications on the train environment,” in Proc. Opt. Fiber Commun. Conf., 2011, Paper no. OWT3.

A. Kannoet al., “20-Gbaud QPSK optical and radio transmission using high-gain antennas for resilient access networks,” in Proc. IEEE Summer Top. Meetings, 2012, pp. 145–146.

P. T. Datet al., “Energy and deployment efficiency of a millimeter-wave radio-on-radio-over-fiber system for railways,” in Proc. Opt. Fiber Commun. Conf., 2013, Paper no. JTh2A.61.

Y.-K. Yeoet al., “A 448 × 448 optical cross-connect for high-performance computers and multi-terabit/s routers,” in Proc. Opt. Fiber Commun. Conf., 2010, Paper no. OMP6.

T. L. Thanh, V. N. Q. Bao, P. T. Dat, A. Kanno, and T. Kawanishi, “10-Gb/s wireless signal transmission over a seamless IM/DD fiber-MMW system at 92.5 GHz,” in Proc. IEEE Int. Conf. Commun., 2015, pp. 1364–1369.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.