Abstract

A highly compact biocompatible microprobe type fiber optic temperature sensor was experimentally demonstrated utilizing an inherently high thermo-optic coefficient of DNA biopolymer. The sensor was based on an all-fiber multimode interferometer (MMI) along a coreless silica fiber (CSF) spliced to an end of a single mode fiber. Au film was deposited the CSF end facet to provide a double path for MMI and it also worked as a probe terminal. The circumferential area of CSF was coated with DNA-cetyltrimethylammonium chloride (CTMA) thin solid film, which served as a temperature sensing head. We experimentally investigated thermo-optical properties of DNA-CTMA thin solid films to find its large negative thermo-optical coefficient −4.15 × 10−4/°C in the temperature range from 20 to 70 °C. DNA-CTMA coated fiber optic probe was immersed in a water bath to simulate the bio compatible environment whose temperature was varied in the range from 30 to 70 °C. The proposed sensor showed a high-temperature sensitivity of −0.22 nm/°C in the spectral shifts, and 0.085 dB/°C in the reflected optical power changes. The proposed probe can be readily applied in various types of in vivo point of care temperature monitoring.

© 2017 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription