Abstract

The frequency division multiplexing (FDM) technique is first introduced into a direct-detection phase-sensitive OTDR to improve the distributed acoustic sensing performance by using a frequency step sweeping laser source and a dual-pulse heterodyne detection scheme. A raised-cosine-shaped pulse is used to suppress the crosstalk in the FDM technique. By using this technique, a 40-kS/s sampling rate to vibration is realized with a 10-km measurement range, which implies the tradeoff relationship between the frequency response and the measurement range is broken. In the experiment, vibrations with different frequencies are measured to validate the effectiveness of the proposed technique. A 20-kHz frequency response is achieved over a 10-km measurement distance, and the frequency response shows a good flatness with a fluctuation of $\sim$ 0.5 dB.

© 2017 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription