Abstract

A theoretical and experimental study has been carried out on a tunable dual pump-probe optical source for distributed Brillouin optical time-domain analysis (BOTDA). The developed source exploits a modified Brillouin ring laser technology and is capable of a tuning range of ∼200 MHz without using phase-locked loop or optical sideband generation techniques, and exhibits a linewidth smaller than 2.5 MHz and ∼0.5 mW power. In BOTDA experiments, the proposed source has demonstrated to be an efficient solution enabling distributed sensing over 10 km single mode fiber with a spatial resolution of ∼4 m, and a strain and temperature resolutions of ∼10 με and ∼0.5 °C respectively.

© 2017 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” J. Sensors, vol. 16, no. 5, 2016, Art. no. .
  2. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1301, 1995.
  3. D. Garus, “Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis,” Opt. Lett, vol. 21, no. 17, pp. 1402–1404, 1996.
  4. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1340–1348, 1995.
  5. C. A. Galindez-Jamioy and J. M. López-Higuera, “Brillouin distributed fiber sensors: An overview and applications,” J. Sensors, vol. 2012, 2012, Art. no. .
  6. M. A. Sotoet al., “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett., vol. 35, no. 2, pp. 259–261, 2010.
  7. A. W. Brownet al., “Brillouin scattering based distributed sensors for structural applications,” J. Intell. Mater. Syst. Struct., vol. 10, no. 4, pp. 340–349, 1999.
  8. M. Nikles, L. Thévenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett., vol. 21, no. 10, pp. 758–760, 1996.
  9. H. Iribaset al., “Cost-effective brillouin optical time-domain analysis sensor using a single optical source and passive optical filtering,” J. Sensors, vol. 2016, 2016, Art. no. .
  10. K. Yong Song and S. Yang, “Simplified Brillouin optical time-domain sensor based on direct modulation of a laser diode,” Opt. Express, vol. 18, no. 33, pp. 24012–24018, 2010.
  11. M. Bravoet al., “Application of remote power-by-light switching in a simplified BOTDA sensor network,” Sensors, vol. 13, no. 10, pp 17334–17344, 2013.
  12. F. Bastianini, D. Marini, and G. Bolognini, “Modified Brillouin ring laser technology for Brillouin-based sensing,” in Opt. Proc. SPIE 9634, 24th Int. Conf. Opt. Fiber Sensors, Curitiba, Brazil, 2015, Paper 96345E.
  13. M. Iulianoet al., “BOTDA sensing system employing a tunable low-cost Brillouin fiber ring laser pump-probe source,” in Proc. SPIE 10323, 25th Int. Conf. Opt. Fiber Sensors, Jeju, South Korea, 2017, Paper 1032395.
  14. G. J. Cowle and D. Y. Stepanov, “Hybrid Brillouin/erbium fiber laser,” Opt. Lett, vol. 21, no. 16, pp. 1250–1252, 1996.
  15. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett, vol. 7, no. 6, pp. 288–290, 1982.
  16. M. A. Hambali, “Reduction of brillouin threshold by circulating spontaneous brillouin stokes in ring cavity,” in Proc. Topical Meeting Lasers Optoelectron., 2009, pp. 754–755.
  17. P. Bayvel and I. P. Giles, “Evaluation of performance parameters of single-mode all-fiber Brillouin ring lasers,” Opt. Lett., vol. 14, no. 11, pp. 581–583, 1989.
  18. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications. New York, NY, USA: Wiley, 1994.
  19. D. Yongkang, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100km sensing length,” Opt. Lett, vol. 36, no. 2, pp. 277–279, 2011.
  20. P. Horak and W. H. Loh, “On the delayed self-heterodyne interferometric technique for determining the linewidth of fiber lasers,” Opt. Express, vol. 14, no. 9, pp. 3923–3928, 2006.
  21. J. Geng and J. Shibin Jiang, “Pump-to-Stokes transfer of relative intensity noise in Brillouin fiber ring lasers,” Opt. Lett, vol. 32, no. 1, pp. 11–13, 2017.
  22. S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photon. Technol. Lett., vol. 22, no. 14, pp. 1057–1059, 2010.
  23. A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” J. Sensors, vol. 9, no. 6, pp. 633–634, 2009.

2017 (1)

J. Geng and J. Shibin Jiang, “Pump-to-Stokes transfer of relative intensity noise in Brillouin fiber ring lasers,” Opt. Lett, vol. 32, no. 1, pp. 11–13, 2017.

2016 (2)

H. Iribaset al., “Cost-effective brillouin optical time-domain analysis sensor using a single optical source and passive optical filtering,” J. Sensors, vol. 2016, 2016, Art. no. .

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” J. Sensors, vol. 16, no. 5, 2016, Art. no. .

2013 (1)

M. Bravoet al., “Application of remote power-by-light switching in a simplified BOTDA sensor network,” Sensors, vol. 13, no. 10, pp 17334–17344, 2013.

2012 (1)

C. A. Galindez-Jamioy and J. M. López-Higuera, “Brillouin distributed fiber sensors: An overview and applications,” J. Sensors, vol. 2012, 2012, Art. no. .

2011 (1)

D. Yongkang, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100km sensing length,” Opt. Lett, vol. 36, no. 2, pp. 277–279, 2011.

2010 (3)

M. A. Sotoet al., “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett., vol. 35, no. 2, pp. 259–261, 2010.

K. Yong Song and S. Yang, “Simplified Brillouin optical time-domain sensor based on direct modulation of a laser diode,” Opt. Express, vol. 18, no. 33, pp. 24012–24018, 2010.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photon. Technol. Lett., vol. 22, no. 14, pp. 1057–1059, 2010.

2009 (1)

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” J. Sensors, vol. 9, no. 6, pp. 633–634, 2009.

2006 (1)

1999 (1)

A. W. Brownet al., “Brillouin scattering based distributed sensors for structural applications,” J. Intell. Mater. Syst. Struct., vol. 10, no. 4, pp. 340–349, 1999.

1996 (3)

G. J. Cowle and D. Y. Stepanov, “Hybrid Brillouin/erbium fiber laser,” Opt. Lett, vol. 21, no. 16, pp. 1250–1252, 1996.

M. Nikles, L. Thévenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett., vol. 21, no. 10, pp. 758–760, 1996.

D. Garus, “Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis,” Opt. Lett, vol. 21, no. 17, pp. 1402–1404, 1996.

1995 (2)

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1340–1348, 1995.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1301, 1995.

1989 (1)

1982 (1)

L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett, vol. 7, no. 6, pp. 288–290, 1982.

Bao, X.

D. Yongkang, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100km sensing length,” Opt. Lett, vol. 36, no. 2, pp. 277–279, 2011.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1340–1348, 1995.

Barrias, A.

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” J. Sensors, vol. 16, no. 5, 2016, Art. no. .

Bastianini, F.

F. Bastianini, D. Marini, and G. Bolognini, “Modified Brillouin ring laser technology for Brillouin-based sensing,” in Opt. Proc. SPIE 9634, 24th Int. Conf. Opt. Fiber Sensors, Curitiba, Brazil, 2015, Paper 96345E.

Bayvel, P.

Bernini, R.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” J. Sensors, vol. 9, no. 6, pp. 633–634, 2009.

Bolognini, G.

F. Bastianini, D. Marini, and G. Bolognini, “Modified Brillouin ring laser technology for Brillouin-based sensing,” in Opt. Proc. SPIE 9634, 24th Int. Conf. Opt. Fiber Sensors, Curitiba, Brazil, 2015, Paper 96345E.

Boppart, S. A.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photon. Technol. Lett., vol. 22, no. 14, pp. 1057–1059, 2010.

Bravo, M.

M. Bravoet al., “Application of remote power-by-light switching in a simplified BOTDA sensor network,” Sensors, vol. 13, no. 10, pp 17334–17344, 2013.

Brown, A. W.

A. W. Brownet al., “Brillouin scattering based distributed sensors for structural applications,” J. Intell. Mater. Syst. Struct., vol. 10, no. 4, pp. 340–349, 1999.

Casas, J. R.

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” J. Sensors, vol. 16, no. 5, 2016, Art. no. .

Chen, L.

D. Yongkang, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100km sensing length,” Opt. Lett, vol. 36, no. 2, pp. 277–279, 2011.

Chodorow, M.

L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett, vol. 7, no. 6, pp. 288–290, 1982.

Cowle, G. J.

G. J. Cowle and D. Y. Stepanov, “Hybrid Brillouin/erbium fiber laser,” Opt. Lett, vol. 21, no. 16, pp. 1250–1252, 1996.

Desurvire, E.

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications. New York, NY, USA: Wiley, 1994.

Dhliwayo, J.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1340–1348, 1995.

Galindez-Jamioy, C. A.

C. A. Galindez-Jamioy and J. M. López-Higuera, “Brillouin distributed fiber sensors: An overview and applications,” J. Sensors, vol. 2012, 2012, Art. no. .

Garus, D.

D. Garus, “Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis,” Opt. Lett, vol. 21, no. 17, pp. 1402–1404, 1996.

Geng, J.

J. Geng and J. Shibin Jiang, “Pump-to-Stokes transfer of relative intensity noise in Brillouin fiber ring lasers,” Opt. Lett, vol. 32, no. 1, pp. 11–13, 2017.

Giles, I. P.

Hambali, M. A.

M. A. Hambali, “Reduction of brillouin threshold by circulating spontaneous brillouin stokes in ring cavity,” in Proc. Topical Meeting Lasers Optoelectron., 2009, pp. 754–755.

Heron, N.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1340–1348, 1995.

Horak, P.

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1301, 1995.

Iribas, H.

H. Iribaset al., “Cost-effective brillouin optical time-domain analysis sensor using a single optical source and passive optical filtering,” J. Sensors, vol. 2016, 2016, Art. no. .

Iuliano, M.

M. Iulianoet al., “BOTDA sensing system employing a tunable low-cost Brillouin fiber ring laser pump-probe source,” in Proc. SPIE 10323, 25th Int. Conf. Opt. Fiber Sensors, Jeju, South Korea, 2017, Paper 1032395.

Jackson, D. A.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1340–1348, 1995.

Jung, W.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photon. Technol. Lett., vol. 22, no. 14, pp. 1057–1059, 2010.

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1301, 1995.

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1301, 1995.

Loh, W. H.

López-Higuera, J. M.

C. A. Galindez-Jamioy and J. M. López-Higuera, “Brillouin distributed fiber sensors: An overview and applications,” J. Sensors, vol. 2012, 2012, Art. no. .

Marini, D.

F. Bastianini, D. Marini, and G. Bolognini, “Modified Brillouin ring laser technology for Brillouin-based sensing,” in Opt. Proc. SPIE 9634, 24th Int. Conf. Opt. Fiber Sensors, Curitiba, Brazil, 2015, Paper 96345E.

Minardo, A.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” J. Sensors, vol. 9, no. 6, pp. 633–634, 2009.

Nikles, M.

Robert, P. A.

Sharma, U.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photon. Technol. Lett., vol. 22, no. 14, pp. 1057–1059, 2010.

Shaw, H. J.

L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett, vol. 7, no. 6, pp. 288–290, 1982.

Shibin Jiang, J.

J. Geng and J. Shibin Jiang, “Pump-to-Stokes transfer of relative intensity noise in Brillouin fiber ring lasers,” Opt. Lett, vol. 32, no. 1, pp. 11–13, 2017.

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1301, 1995.

Shin, S.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photon. Technol. Lett., vol. 22, no. 14, pp. 1057–1059, 2010.

Soto, M. A.

Stepanov, D. Y.

G. J. Cowle and D. Y. Stepanov, “Hybrid Brillouin/erbium fiber laser,” Opt. Lett, vol. 21, no. 16, pp. 1250–1252, 1996.

Stokes, L. F.

L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett, vol. 7, no. 6, pp. 288–290, 1982.

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1301, 1995.

Thévenaz, L.

Tu, H.

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photon. Technol. Lett., vol. 22, no. 14, pp. 1057–1059, 2010.

Villalba, S.

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” J. Sensors, vol. 16, no. 5, 2016, Art. no. .

Webb, D. J.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1340–1348, 1995.

Yang, S.

Yong Song, K.

Yongkang, D.

D. Yongkang, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100km sensing length,” Opt. Lett, vol. 36, no. 2, pp. 277–279, 2011.

Zeni, L.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” J. Sensors, vol. 9, no. 6, pp. 633–634, 2009.

IEEE Photon. Technol. Lett. (1)

S. Shin, U. Sharma, H. Tu, W. Jung, and S. A. Boppart, “Characterization and analysis of relative intensity noise in broadband optical sources for optical coherence tomography,” IEEE Photon. Technol. Lett., vol. 22, no. 14, pp. 1057–1059, 2010.

J. Intell. Mater. Syst. Struct. (1)

A. W. Brownet al., “Brillouin scattering based distributed sensors for structural applications,” J. Intell. Mater. Syst. Struct., vol. 10, no. 4, pp. 340–349, 1999.

J. Lightw. Technol. (2)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1296–1301, 1995.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightw. Technol., vol. 13, no. 7, pp. 1340–1348, 1995.

J. Sensors (4)

C. A. Galindez-Jamioy and J. M. López-Higuera, “Brillouin distributed fiber sensors: An overview and applications,” J. Sensors, vol. 2012, 2012, Art. no. .

H. Iribaset al., “Cost-effective brillouin optical time-domain analysis sensor using a single optical source and passive optical filtering,” J. Sensors, vol. 2016, 2016, Art. no. .

A. Barrias, J. R. Casas, and S. Villalba, “A review of distributed optical fiber sensors for civil engineering applications,” J. Sensors, vol. 16, no. 5, 2016, Art. no. .

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” J. Sensors, vol. 9, no. 6, pp. 633–634, 2009.

Opt. Express (2)

Opt. Lett (5)

D. Garus, “Distributed sensing technique based on Brillouin optical-fiber frequency-domain analysis,” Opt. Lett, vol. 21, no. 17, pp. 1402–1404, 1996.

D. Yongkang, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100km sensing length,” Opt. Lett, vol. 36, no. 2, pp. 277–279, 2011.

G. J. Cowle and D. Y. Stepanov, “Hybrid Brillouin/erbium fiber laser,” Opt. Lett, vol. 21, no. 16, pp. 1250–1252, 1996.

L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett, vol. 7, no. 6, pp. 288–290, 1982.

J. Geng and J. Shibin Jiang, “Pump-to-Stokes transfer of relative intensity noise in Brillouin fiber ring lasers,” Opt. Lett, vol. 32, no. 1, pp. 11–13, 2017.

Opt. Lett. (3)

Sensors (1)

M. Bravoet al., “Application of remote power-by-light switching in a simplified BOTDA sensor network,” Sensors, vol. 13, no. 10, pp 17334–17344, 2013.

Other (4)

F. Bastianini, D. Marini, and G. Bolognini, “Modified Brillouin ring laser technology for Brillouin-based sensing,” in Opt. Proc. SPIE 9634, 24th Int. Conf. Opt. Fiber Sensors, Curitiba, Brazil, 2015, Paper 96345E.

M. Iulianoet al., “BOTDA sensing system employing a tunable low-cost Brillouin fiber ring laser pump-probe source,” in Proc. SPIE 10323, 25th Int. Conf. Opt. Fiber Sensors, Jeju, South Korea, 2017, Paper 1032395.

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications. New York, NY, USA: Wiley, 1994.

M. A. Hambali, “Reduction of brillouin threshold by circulating spontaneous brillouin stokes in ring cavity,” in Proc. Topical Meeting Lasers Optoelectron., 2009, pp. 754–755.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.