Abstract

The CO2 laser based fabrication of tapered long period gratings (TLPGs) is optimized so that their transmission spectra are comparable with those made using the arc-discharge technique, which typically exhibits transmission losses below 2 dB. The reduction in transmission loss was achieved by optimizing the micro-taper geometry and the duty-cycle of the device. A 6-period TLPG of period 378 μm exhibited a pass-band transmission loss of 0.6 dB, resonance band extinction values of 3 dB and had a physical length of 2.27 mm. The average refractive index sensitivity of a 6 period TPLG was measured and found to be 372 nm/RI.

© 2017 CCBY

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightw. Technol., vol. 14, no. 1, pp. 58–65,  1996.
  2. P. Peterka, J. Maria, and B. Dussardier, “Long-period fiber grating as wavelength selective element in double-clad Yb-doped fiber-ring lasers,” Laser Phys. Lett., vol. 6, pp. 732–736, 2009.
  3. S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol., vol. 14, pp. R49–R61, 2003.
  4. M. Partridge, S. W. James, J. Barrington, and R. P. Tatam, “Overwrite fabrication and tuning of long period gratings,” Opt. Express, vol. 24, pp. 22345–22356, 2016.
  5. T. Wang, W. Yasukochi, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas,” Sens. Actuators B, Chem., vol. 228, pp. 573–580, 2016.
  6. L. Marqueset al., “Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles,” Biosens. Bioelectron., vol. 75, pp. 222–231, 2016.
  7. M. Partridge, R. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Long period grating based toluene sensor for use with water contamination,” Sens. Actuators B, Chem., vol. 203, pp. 621–625, 2014.
  8. Y. Yuet al., “Temperature and refractive index measurements using long period fiber gratings fabricated by a femtosecond laser,” Proc. SPIE, vol. 8307, 2011, Paper 83071W.
  9. M. Perez Macielet al., “Tunable wavelength erbium doped fiber linear cavity laser based on mechanically induced long-period fiber gratings,” Proc. SPIE, vol. 9958, 2016, Paper 995816.
  10. Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys., vol. 108, 2010, Paper 081101.
  11. G. Yinet al., “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 698–701,  2014.
  12. L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated using resistive filament heating,” Proc. SPIE, vol. 7004, 2008, Paper 70044K.
  13. D. Castro Alves, J. M. P. Coelho, M. Nespereira, F. Monteiro, M. Abreu, and J. M. Rebordão, “Automation methodology for the development of LPFG using CO2 laser radiation,” Proc. SPIE, 2013, vol. 8785, Paper 87854X.
  14. E. M. Dianovet al., “Thermo-induced long-period fibre gratings,” in Proc. Eur. Conf. Opt. Commun., Edinburgh, U.K., 1997, pp. 53–56.
  15. R. Kritzinger, D. Schmieder, and A. Booysen, “Azimuthally symmetric long-period fiber grating fabrication with a TEM01 mode CO2 laser,” Meas. Sci. Technol., vol. 20, pp. 1–8, 2009.
  16. X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings single-side induced by long-pulse CO2 laser,” Opt. Commun., vol. 284, pp. 1232–1237, 2011.
  17. M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Increasing sensitivity of arc-induced long-period gratings—Pushing the fabrication technique toward its limits,” Meas. Sci. Technol., vol. 22, pp. 1–6, 2011.
  18. R. Y. N. Wong, E. Chehura, S. E. Staines, S. W. James, and R. P. Tatam, “Fabrication considerations for fiber optic long period gratings operating at the phase matching turning point,” Appl. Opt., vol. 53, pp. 4669–4674, 2014.
  19. K. Mullaney, S. Staines, S. W. James, and R. P. Tatam, “Optimised process for fabricating long period gratings,” Proc. SPIE, vol. 10323, 2017, Paper 103232C.
  20. K. Mullaney, “The fabrication of micro-tapered optical fibres for sensing applications,” Ph.D. dissertation, Dept. Eng. Photon., Cranfield Univ., Cranfield, U.K., 2016.
  21. K. Mullaney, R. Correia, S. Staines, S. W. James, and R. P. Tatam, “Monitoring techniques for the manufacture of tapered optical fibres,” Appl. Opt., vol. 54, no. 28, pp. 8531–8536, 2015.
  22. Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys., vol. 108, no. 8, pp. 1–37, 2010.
  23. D. Yablonet al., “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett., vol. 84, no. 1, pp. 19–21, 2000.
  24. A. D. Yablonet al., “Frozen-in viscoelasticity for novel beam expanders and high-power connectors,” J. Lightw. Technol., vol. 22, no. 1, pp. 16–23,  2004.
  25. S. J. Buggy, E. Chehura, S. W. James, and R. P. Tatam, “Optical fibre grating refractometers for resin cure monitoring,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S60–S65, 2007.
  26. D. J. Little, G. D. Marshall, and M. J. Withford, “Fabrication of periodic, resonant features in optical fibres using a CO2 laser micro-tapering system,” in Proc. 2nd Pacific Int. Conf. Appl. Laser Opt., 2006, pp. 383–386.
  27. H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightw. Technol., vol. 16, no. 9, pp. 1606–1612,  1998.
  28. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett., vol. 36, no. 12, pp. 2233–2235, 2011.
  29. X. Zhang, Z. Yin, Y. Li, F. Pang, Y. Liu, and T. Wang, “Investigation of effects of diameter on characteristics of a long-period fiber grating,” Proc. SPIE, vol. 8561, 2012, Paper 85611H.

2017 (1)

K. Mullaney, S. Staines, S. W. James, and R. P. Tatam, “Optimised process for fabricating long period gratings,” Proc. SPIE, vol. 10323, 2017, Paper 103232C.

2016 (4)

M. Partridge, S. W. James, J. Barrington, and R. P. Tatam, “Overwrite fabrication and tuning of long period gratings,” Opt. Express, vol. 24, pp. 22345–22356, 2016.

T. Wang, W. Yasukochi, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas,” Sens. Actuators B, Chem., vol. 228, pp. 573–580, 2016.

L. Marqueset al., “Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles,” Biosens. Bioelectron., vol. 75, pp. 222–231, 2016.

M. Perez Macielet al., “Tunable wavelength erbium doped fiber linear cavity laser based on mechanically induced long-period fiber gratings,” Proc. SPIE, vol. 9958, 2016, Paper 995816.

2015 (1)

2014 (3)

M. Partridge, R. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Long period grating based toluene sensor for use with water contamination,” Sens. Actuators B, Chem., vol. 203, pp. 621–625, 2014.

G. Yinet al., “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 698–701,  2014.

R. Y. N. Wong, E. Chehura, S. E. Staines, S. W. James, and R. P. Tatam, “Fabrication considerations for fiber optic long period gratings operating at the phase matching turning point,” Appl. Opt., vol. 53, pp. 4669–4674, 2014.

2013 (1)

D. Castro Alves, J. M. P. Coelho, M. Nespereira, F. Monteiro, M. Abreu, and J. M. Rebordão, “Automation methodology for the development of LPFG using CO2 laser radiation,” Proc. SPIE, 2013, vol. 8785, Paper 87854X.

2012 (1)

X. Zhang, Z. Yin, Y. Li, F. Pang, Y. Liu, and T. Wang, “Investigation of effects of diameter on characteristics of a long-period fiber grating,” Proc. SPIE, vol. 8561, 2012, Paper 85611H.

2011 (4)

P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett., vol. 36, no. 12, pp. 2233–2235, 2011.

X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings single-side induced by long-pulse CO2 laser,” Opt. Commun., vol. 284, pp. 1232–1237, 2011.

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Increasing sensitivity of arc-induced long-period gratings—Pushing the fabrication technique toward its limits,” Meas. Sci. Technol., vol. 22, pp. 1–6, 2011.

Y. Yuet al., “Temperature and refractive index measurements using long period fiber gratings fabricated by a femtosecond laser,” Proc. SPIE, vol. 8307, 2011, Paper 83071W.

2010 (2)

Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys., vol. 108, 2010, Paper 081101.

Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys., vol. 108, no. 8, pp. 1–37, 2010.

2009 (2)

P. Peterka, J. Maria, and B. Dussardier, “Long-period fiber grating as wavelength selective element in double-clad Yb-doped fiber-ring lasers,” Laser Phys. Lett., vol. 6, pp. 732–736, 2009.

R. Kritzinger, D. Schmieder, and A. Booysen, “Azimuthally symmetric long-period fiber grating fabrication with a TEM01 mode CO2 laser,” Meas. Sci. Technol., vol. 20, pp. 1–8, 2009.

2008 (1)

L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated using resistive filament heating,” Proc. SPIE, vol. 7004, 2008, Paper 70044K.

2007 (1)

S. J. Buggy, E. Chehura, S. W. James, and R. P. Tatam, “Optical fibre grating refractometers for resin cure monitoring,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S60–S65, 2007.

2004 (1)

A. D. Yablonet al., “Frozen-in viscoelasticity for novel beam expanders and high-power connectors,” J. Lightw. Technol., vol. 22, no. 1, pp. 16–23,  2004.

2003 (1)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol., vol. 14, pp. R49–R61, 2003.

2000 (1)

D. Yablonet al., “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett., vol. 84, no. 1, pp. 19–21, 2000.

1998 (1)

H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightw. Technol., vol. 16, no. 9, pp. 1606–1612,  1998.

1996 (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightw. Technol., vol. 14, no. 1, pp. 58–65,  1996.

Abreu, M.

D. Castro Alves, J. M. P. Coelho, M. Nespereira, F. Monteiro, M. Abreu, and J. M. Rebordão, “Automation methodology for the development of LPFG using CO2 laser radiation,” Proc. SPIE, 2013, vol. 8785, Paper 87854X.

Barrington, J.

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightw. Technol., vol. 14, no. 1, pp. 58–65,  1996.

Bock, W. J.

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Increasing sensitivity of arc-induced long-period gratings—Pushing the fabrication technique toward its limits,” Meas. Sci. Technol., vol. 22, pp. 1–6, 2011.

Booysen, A.

R. Kritzinger, D. Schmieder, and A. Booysen, “Azimuthally symmetric long-period fiber grating fabrication with a TEM01 mode CO2 laser,” Meas. Sci. Technol., vol. 20, pp. 1–8, 2009.

Brambilla, G.

Bucholtz, F.

H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightw. Technol., vol. 16, no. 9, pp. 1606–1612,  1998.

Buggy, S. J.

S. J. Buggy, E. Chehura, S. W. James, and R. P. Tatam, “Optical fibre grating refractometers for resin cure monitoring,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S60–S65, 2007.

Castro Alves, D.

D. Castro Alves, J. M. P. Coelho, M. Nespereira, F. Monteiro, M. Abreu, and J. M. Rebordão, “Automation methodology for the development of LPFG using CO2 laser radiation,” Proc. SPIE, 2013, vol. 8785, Paper 87854X.

Chehura, E.

R. Y. N. Wong, E. Chehura, S. E. Staines, S. W. James, and R. P. Tatam, “Fabrication considerations for fiber optic long period gratings operating at the phase matching turning point,” Appl. Opt., vol. 53, pp. 4669–4674, 2014.

S. J. Buggy, E. Chehura, S. W. James, and R. P. Tatam, “Optical fibre grating refractometers for resin cure monitoring,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S60–S65, 2007.

Chen, J.

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Increasing sensitivity of arc-induced long-period gratings—Pushing the fabrication technique toward its limits,” Meas. Sci. Technol., vol. 22, pp. 1–6, 2011.

Coelho, J. M. P.

D. Castro Alves, J. M. P. Coelho, M. Nespereira, F. Monteiro, M. Abreu, and J. M. Rebordão, “Automation methodology for the development of LPFG using CO2 laser radiation,” Proc. SPIE, 2013, vol. 8785, Paper 87854X.

Correia, R.

Davis, F.

M. Partridge, R. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Long period grating based toluene sensor for use with water contamination,” Sens. Actuators B, Chem., vol. 203, pp. 621–625, 2014.

Dianov, E. M.

E. M. Dianovet al., “Thermo-induced long-period fibre gratings,” in Proc. Eur. Conf. Opt. Commun., Edinburgh, U.K., 1997, pp. 53–56.

Ding, M.

Dong, X.

L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated using resistive filament heating,” Proc. SPIE, vol. 7004, 2008, Paper 70044K.

Dussardier, B.

P. Peterka, J. Maria, and B. Dussardier, “Long-period fiber grating as wavelength selective element in double-clad Yb-doped fiber-ring lasers,” Laser Phys. Lett., vol. 6, pp. 732–736, 2009.

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightw. Technol., vol. 14, no. 1, pp. 58–65,  1996.

Farrell, G.

He, S.

L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated using resistive filament heating,” Proc. SPIE, vol. 7004, 2008, Paper 70044K.

Higson, S. P. J.

M. Partridge, R. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Long period grating based toluene sensor for use with water contamination,” Sens. Actuators B, Chem., vol. 203, pp. 621–625, 2014.

James, S. W.

K. Mullaney, S. Staines, S. W. James, and R. P. Tatam, “Optimised process for fabricating long period gratings,” Proc. SPIE, vol. 10323, 2017, Paper 103232C.

T. Wang, W. Yasukochi, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas,” Sens. Actuators B, Chem., vol. 228, pp. 573–580, 2016.

M. Partridge, S. W. James, J. Barrington, and R. P. Tatam, “Overwrite fabrication and tuning of long period gratings,” Opt. Express, vol. 24, pp. 22345–22356, 2016.

K. Mullaney, R. Correia, S. Staines, S. W. James, and R. P. Tatam, “Monitoring techniques for the manufacture of tapered optical fibres,” Appl. Opt., vol. 54, no. 28, pp. 8531–8536, 2015.

R. Y. N. Wong, E. Chehura, S. E. Staines, S. W. James, and R. P. Tatam, “Fabrication considerations for fiber optic long period gratings operating at the phase matching turning point,” Appl. Opt., vol. 53, pp. 4669–4674, 2014.

M. Partridge, R. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Long period grating based toluene sensor for use with water contamination,” Sens. Actuators B, Chem., vol. 203, pp. 621–625, 2014.

S. J. Buggy, E. Chehura, S. W. James, and R. P. Tatam, “Optical fibre grating refractometers for resin cure monitoring,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S60–S65, 2007.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol., vol. 14, pp. R49–R61, 2003.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightw. Technol., vol. 14, no. 1, pp. 58–65,  1996.

Kersey, A. D.

H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightw. Technol., vol. 16, no. 9, pp. 1606–1612,  1998.

Korposh, S.

T. Wang, W. Yasukochi, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas,” Sens. Actuators B, Chem., vol. 228, pp. 573–580, 2016.

Kritzinger, R.

R. Kritzinger, D. Schmieder, and A. Booysen, “Azimuthally symmetric long-period fiber grating fabrication with a TEM01 mode CO2 laser,” Meas. Sci. Technol., vol. 20, pp. 1–8, 2009.

Lee, S.-W.

T. Wang, W. Yasukochi, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas,” Sens. Actuators B, Chem., vol. 228, pp. 573–580, 2016.

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightw. Technol., vol. 14, no. 1, pp. 58–65,  1996.

Li, Y.

X. Zhang, Z. Yin, Y. Li, F. Pang, Y. Liu, and T. Wang, “Investigation of effects of diameter on characteristics of a long-period fiber grating,” Proc. SPIE, vol. 8561, 2012, Paper 85611H.

Little, D. J.

D. J. Little, G. D. Marshall, and M. J. Withford, “Fabrication of periodic, resonant features in optical fibres using a CO2 laser micro-tapering system,” in Proc. 2nd Pacific Int. Conf. Appl. Laser Opt., 2006, pp. 383–386.

Liu, X.

X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings single-side induced by long-pulse CO2 laser,” Opt. Commun., vol. 284, pp. 1232–1237, 2011.

Liu, Y.

X. Zhang, Z. Yin, Y. Li, F. Pang, Y. Liu, and T. Wang, “Investigation of effects of diameter on characteristics of a long-period fiber grating,” Proc. SPIE, vol. 8561, 2012, Paper 85611H.

Lu, C.

L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated using resistive filament heating,” Proc. SPIE, vol. 7004, 2008, Paper 70044K.

Luo, S.

X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings single-side induced by long-pulse CO2 laser,” Opt. Commun., vol. 284, pp. 1232–1237, 2011.

Maria, J.

P. Peterka, J. Maria, and B. Dussardier, “Long-period fiber grating as wavelength selective element in double-clad Yb-doped fiber-ring lasers,” Laser Phys. Lett., vol. 6, pp. 732–736, 2009.

Marques, L.

L. Marqueset al., “Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles,” Biosens. Bioelectron., vol. 75, pp. 222–231, 2016.

Marshall, G. D.

D. J. Little, G. D. Marshall, and M. J. Withford, “Fabrication of periodic, resonant features in optical fibres using a CO2 laser micro-tapering system,” in Proc. 2nd Pacific Int. Conf. Appl. Laser Opt., 2006, pp. 383–386.

Mikulic, P.

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Increasing sensitivity of arc-induced long-period gratings—Pushing the fabrication technique toward its limits,” Meas. Sci. Technol., vol. 22, pp. 1–6, 2011.

Monteiro, F.

D. Castro Alves, J. M. P. Coelho, M. Nespereira, F. Monteiro, M. Abreu, and J. M. Rebordão, “Automation methodology for the development of LPFG using CO2 laser radiation,” Proc. SPIE, 2013, vol. 8785, Paper 87854X.

Mullaney, K.

K. Mullaney, S. Staines, S. W. James, and R. P. Tatam, “Optimised process for fabricating long period gratings,” Proc. SPIE, vol. 10323, 2017, Paper 103232C.

K. Mullaney, R. Correia, S. Staines, S. W. James, and R. P. Tatam, “Monitoring techniques for the manufacture of tapered optical fibres,” Appl. Opt., vol. 54, no. 28, pp. 8531–8536, 2015.

K. Mullaney, “The fabrication of micro-tapered optical fibres for sensing applications,” Ph.D. dissertation, Dept. Eng. Photon., Cranfield Univ., Cranfield, U.K., 2016.

Nespereira, M.

D. Castro Alves, J. M. P. Coelho, M. Nespereira, F. Monteiro, M. Abreu, and J. M. Rebordão, “Automation methodology for the development of LPFG using CO2 laser radiation,” Proc. SPIE, 2013, vol. 8785, Paper 87854X.

Pang, F.

X. Zhang, Z. Yin, Y. Li, F. Pang, Y. Liu, and T. Wang, “Investigation of effects of diameter on characteristics of a long-period fiber grating,” Proc. SPIE, vol. 8561, 2012, Paper 85611H.

Partridge, M.

M. Partridge, S. W. James, J. Barrington, and R. P. Tatam, “Overwrite fabrication and tuning of long period gratings,” Opt. Express, vol. 24, pp. 22345–22356, 2016.

M. Partridge, R. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Long period grating based toluene sensor for use with water contamination,” Sens. Actuators B, Chem., vol. 203, pp. 621–625, 2014.

Patrick, H. J.

H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightw. Technol., vol. 16, no. 9, pp. 1606–1612,  1998.

Perez Maciel, M.

M. Perez Macielet al., “Tunable wavelength erbium doped fiber linear cavity laser based on mechanically induced long-period fiber gratings,” Proc. SPIE, vol. 9958, 2016, Paper 995816.

Peterka, P.

P. Peterka, J. Maria, and B. Dussardier, “Long-period fiber grating as wavelength selective element in double-clad Yb-doped fiber-ring lasers,” Laser Phys. Lett., vol. 6, pp. 732–736, 2009.

Rebordão, J. M.

D. Castro Alves, J. M. P. Coelho, M. Nespereira, F. Monteiro, M. Abreu, and J. M. Rebordão, “Automation methodology for the development of LPFG using CO2 laser radiation,” Proc. SPIE, 2013, vol. 8785, Paper 87854X.

Schmieder, D.

R. Kritzinger, D. Schmieder, and A. Booysen, “Azimuthally symmetric long-period fiber grating fabrication with a TEM01 mode CO2 laser,” Meas. Sci. Technol., vol. 20, pp. 1–8, 2009.

Semenova, Y.

Shao, L.-Y.

L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated using resistive filament heating,” Proc. SPIE, vol. 7004, 2008, Paper 70044K.

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightw. Technol., vol. 14, no. 1, pp. 58–65,  1996.

Smietana, M.

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Increasing sensitivity of arc-induced long-period gratings—Pushing the fabrication technique toward its limits,” Meas. Sci. Technol., vol. 22, pp. 1–6, 2011.

Staines, S.

K. Mullaney, S. Staines, S. W. James, and R. P. Tatam, “Optimised process for fabricating long period gratings,” Proc. SPIE, vol. 10323, 2017, Paper 103232C.

K. Mullaney, R. Correia, S. Staines, S. W. James, and R. P. Tatam, “Monitoring techniques for the manufacture of tapered optical fibres,” Appl. Opt., vol. 54, no. 28, pp. 8531–8536, 2015.

Staines, S. E.

Tam, H. Y.

L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated using resistive filament heating,” Proc. SPIE, vol. 7004, 2008, Paper 70044K.

Tatam, R. P.

K. Mullaney, S. Staines, S. W. James, and R. P. Tatam, “Optimised process for fabricating long period gratings,” Proc. SPIE, vol. 10323, 2017, Paper 103232C.

T. Wang, W. Yasukochi, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas,” Sens. Actuators B, Chem., vol. 228, pp. 573–580, 2016.

M. Partridge, S. W. James, J. Barrington, and R. P. Tatam, “Overwrite fabrication and tuning of long period gratings,” Opt. Express, vol. 24, pp. 22345–22356, 2016.

K. Mullaney, R. Correia, S. Staines, S. W. James, and R. P. Tatam, “Monitoring techniques for the manufacture of tapered optical fibres,” Appl. Opt., vol. 54, no. 28, pp. 8531–8536, 2015.

M. Partridge, R. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Long period grating based toluene sensor for use with water contamination,” Sens. Actuators B, Chem., vol. 203, pp. 621–625, 2014.

R. Y. N. Wong, E. Chehura, S. E. Staines, S. W. James, and R. P. Tatam, “Fabrication considerations for fiber optic long period gratings operating at the phase matching turning point,” Appl. Opt., vol. 53, pp. 4669–4674, 2014.

S. J. Buggy, E. Chehura, S. W. James, and R. P. Tatam, “Optical fibre grating refractometers for resin cure monitoring,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S60–S65, 2007.

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol., vol. 14, pp. R49–R61, 2003.

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightw. Technol., vol. 14, no. 1, pp. 58–65,  1996.

Wang, P.

Wang, T.

T. Wang, W. Yasukochi, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas,” Sens. Actuators B, Chem., vol. 228, pp. 573–580, 2016.

X. Zhang, Z. Yin, Y. Li, F. Pang, Y. Liu, and T. Wang, “Investigation of effects of diameter on characteristics of a long-period fiber grating,” Proc. SPIE, vol. 8561, 2012, Paper 85611H.

Wang, Y.

Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys., vol. 108, no. 8, pp. 1–37, 2010.

Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys., vol. 108, 2010, Paper 081101.

Withford, M. J.

D. J. Little, G. D. Marshall, and M. J. Withford, “Fabrication of periodic, resonant features in optical fibres using a CO2 laser micro-tapering system,” in Proc. 2nd Pacific Int. Conf. Appl. Laser Opt., 2006, pp. 383–386.

Wong, R.

M. Partridge, R. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Long period grating based toluene sensor for use with water contamination,” Sens. Actuators B, Chem., vol. 203, pp. 621–625, 2014.

Wong, R. Y. N.

Wu, Q.

Xia, Y.

X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings single-side induced by long-pulse CO2 laser,” Opt. Commun., vol. 284, pp. 1232–1237, 2011.

Yablon, A. D.

A. D. Yablonet al., “Frozen-in viscoelasticity for novel beam expanders and high-power connectors,” J. Lightw. Technol., vol. 22, no. 1, pp. 16–23,  2004.

Yablon, D.

D. Yablonet al., “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett., vol. 84, no. 1, pp. 19–21, 2000.

Yan, M.

X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings single-side induced by long-pulse CO2 laser,” Opt. Commun., vol. 284, pp. 1232–1237, 2011.

Yasukochi, W.

T. Wang, W. Yasukochi, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas,” Sens. Actuators B, Chem., vol. 228, pp. 573–580, 2016.

Yin, G.

G. Yinet al., “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 698–701,  2014.

Yin, Z.

X. Zhang, Z. Yin, Y. Li, F. Pang, Y. Liu, and T. Wang, “Investigation of effects of diameter on characteristics of a long-period fiber grating,” Proc. SPIE, vol. 8561, 2012, Paper 85611H.

Yu, Y.

Y. Yuet al., “Temperature and refractive index measurements using long period fiber gratings fabricated by a femtosecond laser,” Proc. SPIE, vol. 8307, 2011, Paper 83071W.

Zhan, L.

X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings single-side induced by long-pulse CO2 laser,” Opt. Commun., vol. 284, pp. 1232–1237, 2011.

Zhang, X.

X. Zhang, Z. Yin, Y. Li, F. Pang, Y. Liu, and T. Wang, “Investigation of effects of diameter on characteristics of a long-period fiber grating,” Proc. SPIE, vol. 8561, 2012, Paper 85611H.

Zhang, Z.

X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings single-side induced by long-pulse CO2 laser,” Opt. Commun., vol. 284, pp. 1232–1237, 2011.

Zhao, J.

L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated using resistive filament heating,” Proc. SPIE, vol. 7004, 2008, Paper 70044K.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. Yablonet al., “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett., vol. 84, no. 1, pp. 19–21, 2000.

Biosens. Bioelectron. (1)

L. Marqueset al., “Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles,” Biosens. Bioelectron., vol. 75, pp. 222–231, 2016.

IEEE Photon. Technol. Lett. (1)

G. Yinet al., “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 698–701,  2014.

J. Appl. Phys. (2)

Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys., vol. 108, 2010, Paper 081101.

Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys., vol. 108, no. 8, pp. 1–37, 2010.

J. Lightw. Technol. (3)

A. D. Yablonet al., “Frozen-in viscoelasticity for novel beam expanders and high-power connectors,” J. Lightw. Technol., vol. 22, no. 1, pp. 16–23,  2004.

H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightw. Technol., vol. 16, no. 9, pp. 1606–1612,  1998.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightw. Technol., vol. 14, no. 1, pp. 58–65,  1996.

J. Opt. A: Pure Appl. Opt. (1)

S. J. Buggy, E. Chehura, S. W. James, and R. P. Tatam, “Optical fibre grating refractometers for resin cure monitoring,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S60–S65, 2007.

Laser Phys. Lett. (1)

P. Peterka, J. Maria, and B. Dussardier, “Long-period fiber grating as wavelength selective element in double-clad Yb-doped fiber-ring lasers,” Laser Phys. Lett., vol. 6, pp. 732–736, 2009.

Meas. Sci. Technol. (3)

S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol., vol. 14, pp. R49–R61, 2003.

M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Increasing sensitivity of arc-induced long-period gratings—Pushing the fabrication technique toward its limits,” Meas. Sci. Technol., vol. 22, pp. 1–6, 2011.

R. Kritzinger, D. Schmieder, and A. Booysen, “Azimuthally symmetric long-period fiber grating fabrication with a TEM01 mode CO2 laser,” Meas. Sci. Technol., vol. 20, pp. 1–8, 2009.

Opt. Commun. (1)

X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings single-side induced by long-pulse CO2 laser,” Opt. Commun., vol. 284, pp. 1232–1237, 2011.

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (6)

X. Zhang, Z. Yin, Y. Li, F. Pang, Y. Liu, and T. Wang, “Investigation of effects of diameter on characteristics of a long-period fiber grating,” Proc. SPIE, vol. 8561, 2012, Paper 85611H.

K. Mullaney, S. Staines, S. W. James, and R. P. Tatam, “Optimised process for fabricating long period gratings,” Proc. SPIE, vol. 10323, 2017, Paper 103232C.

Y. Yuet al., “Temperature and refractive index measurements using long period fiber gratings fabricated by a femtosecond laser,” Proc. SPIE, vol. 8307, 2011, Paper 83071W.

M. Perez Macielet al., “Tunable wavelength erbium doped fiber linear cavity laser based on mechanically induced long-period fiber gratings,” Proc. SPIE, vol. 9958, 2016, Paper 995816.

L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated using resistive filament heating,” Proc. SPIE, vol. 7004, 2008, Paper 70044K.

D. Castro Alves, J. M. P. Coelho, M. Nespereira, F. Monteiro, M. Abreu, and J. M. Rebordão, “Automation methodology for the development of LPFG using CO2 laser radiation,” Proc. SPIE, 2013, vol. 8785, Paper 87854X.

Sens. Actuators B, Chem. (2)

M. Partridge, R. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Long period grating based toluene sensor for use with water contamination,” Sens. Actuators B, Chem., vol. 203, pp. 621–625, 2014.

T. Wang, W. Yasukochi, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas,” Sens. Actuators B, Chem., vol. 228, pp. 573–580, 2016.

Other (3)

E. M. Dianovet al., “Thermo-induced long-period fibre gratings,” in Proc. Eur. Conf. Opt. Commun., Edinburgh, U.K., 1997, pp. 53–56.

K. Mullaney, “The fabrication of micro-tapered optical fibres for sensing applications,” Ph.D. dissertation, Dept. Eng. Photon., Cranfield Univ., Cranfield, U.K., 2016.

D. J. Little, G. D. Marshall, and M. J. Withford, “Fabrication of periodic, resonant features in optical fibres using a CO2 laser micro-tapering system,” in Proc. 2nd Pacific Int. Conf. Appl. Laser Opt., 2006, pp. 383–386.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.