Abstract
© 2017 CCBY
PDF Article© 2017 CCBY
PDF Article
K. Mullaney, S. Staines, S. W. James, and R. P. Tatam, “Optimised process for fabricating long period gratings,” Proc. SPIE, vol. 10323, 2017, Paper 103232C.
T. Wang, W. Yasukochi, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas,” Sens. Actuators B, Chem., vol. 228, pp. 573–580, 2016.
L. Marqueset al., “Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles,” Biosens. Bioelectron., vol. 75, pp. 222–231, 2016.
M. Perez Macielet al., “Tunable wavelength erbium doped fiber linear cavity laser based on mechanically induced long-period fiber gratings,” Proc. SPIE, vol. 9958, 2016, Paper 995816.
M. Partridge, R. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Long period grating based toluene sensor for use with water contamination,” Sens. Actuators B, Chem., vol. 203, pp. 621–625, 2014.
G. Yinet al., “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 698–701, 2014.
D. Castro Alves, J. M. P. Coelho, M. Nespereira, F. Monteiro, M. Abreu, and J. M. Rebordão, “Automation methodology for the development of LPFG using CO2 laser radiation,” Proc. SPIE, 2013, vol. 8785, Paper 87854X.
X. Zhang, Z. Yin, Y. Li, F. Pang, Y. Liu, and T. Wang, “Investigation of effects of diameter on characteristics of a long-period fiber grating,” Proc. SPIE, vol. 8561, 2012, Paper 85611H.
X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings single-side induced by long-pulse CO2 laser,” Opt. Commun., vol. 284, pp. 1232–1237, 2011.
M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Increasing sensitivity of arc-induced long-period gratings—Pushing the fabrication technique toward its limits,” Meas. Sci. Technol., vol. 22, pp. 1–6, 2011.
Y. Yuet al., “Temperature and refractive index measurements using long period fiber gratings fabricated by a femtosecond laser,” Proc. SPIE, vol. 8307, 2011, Paper 83071W.
Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys., vol. 108, 2010, Paper 081101.
Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys., vol. 108, no. 8, pp. 1–37, 2010.
P. Peterka, J. Maria, and B. Dussardier, “Long-period fiber grating as wavelength selective element in double-clad Yb-doped fiber-ring lasers,” Laser Phys. Lett., vol. 6, pp. 732–736, 2009.
R. Kritzinger, D. Schmieder, and A. Booysen, “Azimuthally symmetric long-period fiber grating fabrication with a TEM01 mode CO2 laser,” Meas. Sci. Technol., vol. 20, pp. 1–8, 2009.
L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated using resistive filament heating,” Proc. SPIE, vol. 7004, 2008, Paper 70044K.
S. J. Buggy, E. Chehura, S. W. James, and R. P. Tatam, “Optical fibre grating refractometers for resin cure monitoring,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S60–S65, 2007.
A. D. Yablonet al., “Frozen-in viscoelasticity for novel beam expanders and high-power connectors,” J. Lightw. Technol., vol. 22, no. 1, pp. 16–23, 2004.
S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol., vol. 14, pp. R49–R61, 2003.
D. Yablonet al., “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett., vol. 84, no. 1, pp. 19–21, 2000.
H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightw. Technol., vol. 16, no. 9, pp. 1606–1612, 1998.
A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightw. Technol., vol. 14, no. 1, pp. 58–65, 1996.
D. Castro Alves, J. M. P. Coelho, M. Nespereira, F. Monteiro, M. Abreu, and J. M. Rebordão, “Automation methodology for the development of LPFG using CO2 laser radiation,” Proc. SPIE, 2013, vol. 8785, Paper 87854X.
A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightw. Technol., vol. 14, no. 1, pp. 58–65, 1996.
M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Increasing sensitivity of arc-induced long-period gratings—Pushing the fabrication technique toward its limits,” Meas. Sci. Technol., vol. 22, pp. 1–6, 2011.
R. Kritzinger, D. Schmieder, and A. Booysen, “Azimuthally symmetric long-period fiber grating fabrication with a TEM01 mode CO2 laser,” Meas. Sci. Technol., vol. 20, pp. 1–8, 2009.
H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightw. Technol., vol. 16, no. 9, pp. 1606–1612, 1998.
S. J. Buggy, E. Chehura, S. W. James, and R. P. Tatam, “Optical fibre grating refractometers for resin cure monitoring,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S60–S65, 2007.
D. Castro Alves, J. M. P. Coelho, M. Nespereira, F. Monteiro, M. Abreu, and J. M. Rebordão, “Automation methodology for the development of LPFG using CO2 laser radiation,” Proc. SPIE, 2013, vol. 8785, Paper 87854X.
S. J. Buggy, E. Chehura, S. W. James, and R. P. Tatam, “Optical fibre grating refractometers for resin cure monitoring,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S60–S65, 2007.
M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Increasing sensitivity of arc-induced long-period gratings—Pushing the fabrication technique toward its limits,” Meas. Sci. Technol., vol. 22, pp. 1–6, 2011.
D. Castro Alves, J. M. P. Coelho, M. Nespereira, F. Monteiro, M. Abreu, and J. M. Rebordão, “Automation methodology for the development of LPFG using CO2 laser radiation,” Proc. SPIE, 2013, vol. 8785, Paper 87854X.
M. Partridge, R. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Long period grating based toluene sensor for use with water contamination,” Sens. Actuators B, Chem., vol. 203, pp. 621–625, 2014.
E. M. Dianovet al., “Thermo-induced long-period fibre gratings,” in Proc. Eur. Conf. Opt. Commun., Edinburgh, U.K., 1997, pp. 53–56.
L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated using resistive filament heating,” Proc. SPIE, vol. 7004, 2008, Paper 70044K.
P. Peterka, J. Maria, and B. Dussardier, “Long-period fiber grating as wavelength selective element in double-clad Yb-doped fiber-ring lasers,” Laser Phys. Lett., vol. 6, pp. 732–736, 2009.
A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightw. Technol., vol. 14, no. 1, pp. 58–65, 1996.
L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated using resistive filament heating,” Proc. SPIE, vol. 7004, 2008, Paper 70044K.
M. Partridge, R. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Long period grating based toluene sensor for use with water contamination,” Sens. Actuators B, Chem., vol. 203, pp. 621–625, 2014.
K. Mullaney, S. Staines, S. W. James, and R. P. Tatam, “Optimised process for fabricating long period gratings,” Proc. SPIE, vol. 10323, 2017, Paper 103232C.
T. Wang, W. Yasukochi, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas,” Sens. Actuators B, Chem., vol. 228, pp. 573–580, 2016.
M. Partridge, R. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Long period grating based toluene sensor for use with water contamination,” Sens. Actuators B, Chem., vol. 203, pp. 621–625, 2014.
S. J. Buggy, E. Chehura, S. W. James, and R. P. Tatam, “Optical fibre grating refractometers for resin cure monitoring,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S60–S65, 2007.
S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol., vol. 14, pp. R49–R61, 2003.
A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightw. Technol., vol. 14, no. 1, pp. 58–65, 1996.
H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightw. Technol., vol. 16, no. 9, pp. 1606–1612, 1998.
T. Wang, W. Yasukochi, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas,” Sens. Actuators B, Chem., vol. 228, pp. 573–580, 2016.
R. Kritzinger, D. Schmieder, and A. Booysen, “Azimuthally symmetric long-period fiber grating fabrication with a TEM01 mode CO2 laser,” Meas. Sci. Technol., vol. 20, pp. 1–8, 2009.
T. Wang, W. Yasukochi, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas,” Sens. Actuators B, Chem., vol. 228, pp. 573–580, 2016.
A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightw. Technol., vol. 14, no. 1, pp. 58–65, 1996.
X. Zhang, Z. Yin, Y. Li, F. Pang, Y. Liu, and T. Wang, “Investigation of effects of diameter on characteristics of a long-period fiber grating,” Proc. SPIE, vol. 8561, 2012, Paper 85611H.
D. J. Little, G. D. Marshall, and M. J. Withford, “Fabrication of periodic, resonant features in optical fibres using a CO2 laser micro-tapering system,” in Proc. 2nd Pacific Int. Conf. Appl. Laser Opt., 2006, pp. 383–386.
X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings single-side induced by long-pulse CO2 laser,” Opt. Commun., vol. 284, pp. 1232–1237, 2011.
X. Zhang, Z. Yin, Y. Li, F. Pang, Y. Liu, and T. Wang, “Investigation of effects of diameter on characteristics of a long-period fiber grating,” Proc. SPIE, vol. 8561, 2012, Paper 85611H.
L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated using resistive filament heating,” Proc. SPIE, vol. 7004, 2008, Paper 70044K.
X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings single-side induced by long-pulse CO2 laser,” Opt. Commun., vol. 284, pp. 1232–1237, 2011.
P. Peterka, J. Maria, and B. Dussardier, “Long-period fiber grating as wavelength selective element in double-clad Yb-doped fiber-ring lasers,” Laser Phys. Lett., vol. 6, pp. 732–736, 2009.
L. Marqueset al., “Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles,” Biosens. Bioelectron., vol. 75, pp. 222–231, 2016.
D. J. Little, G. D. Marshall, and M. J. Withford, “Fabrication of periodic, resonant features in optical fibres using a CO2 laser micro-tapering system,” in Proc. 2nd Pacific Int. Conf. Appl. Laser Opt., 2006, pp. 383–386.
M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Increasing sensitivity of arc-induced long-period gratings—Pushing the fabrication technique toward its limits,” Meas. Sci. Technol., vol. 22, pp. 1–6, 2011.
D. Castro Alves, J. M. P. Coelho, M. Nespereira, F. Monteiro, M. Abreu, and J. M. Rebordão, “Automation methodology for the development of LPFG using CO2 laser radiation,” Proc. SPIE, 2013, vol. 8785, Paper 87854X.
K. Mullaney, S. Staines, S. W. James, and R. P. Tatam, “Optimised process for fabricating long period gratings,” Proc. SPIE, vol. 10323, 2017, Paper 103232C.
K. Mullaney, “The fabrication of micro-tapered optical fibres for sensing applications,” Ph.D. dissertation, Dept. Eng. Photon., Cranfield Univ., Cranfield, U.K., 2016.
D. Castro Alves, J. M. P. Coelho, M. Nespereira, F. Monteiro, M. Abreu, and J. M. Rebordão, “Automation methodology for the development of LPFG using CO2 laser radiation,” Proc. SPIE, 2013, vol. 8785, Paper 87854X.
X. Zhang, Z. Yin, Y. Li, F. Pang, Y. Liu, and T. Wang, “Investigation of effects of diameter on characteristics of a long-period fiber grating,” Proc. SPIE, vol. 8561, 2012, Paper 85611H.
M. Partridge, R. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Long period grating based toluene sensor for use with water contamination,” Sens. Actuators B, Chem., vol. 203, pp. 621–625, 2014.
H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightw. Technol., vol. 16, no. 9, pp. 1606–1612, 1998.
M. Perez Macielet al., “Tunable wavelength erbium doped fiber linear cavity laser based on mechanically induced long-period fiber gratings,” Proc. SPIE, vol. 9958, 2016, Paper 995816.
P. Peterka, J. Maria, and B. Dussardier, “Long-period fiber grating as wavelength selective element in double-clad Yb-doped fiber-ring lasers,” Laser Phys. Lett., vol. 6, pp. 732–736, 2009.
D. Castro Alves, J. M. P. Coelho, M. Nespereira, F. Monteiro, M. Abreu, and J. M. Rebordão, “Automation methodology for the development of LPFG using CO2 laser radiation,” Proc. SPIE, 2013, vol. 8785, Paper 87854X.
R. Kritzinger, D. Schmieder, and A. Booysen, “Azimuthally symmetric long-period fiber grating fabrication with a TEM01 mode CO2 laser,” Meas. Sci. Technol., vol. 20, pp. 1–8, 2009.
L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated using resistive filament heating,” Proc. SPIE, vol. 7004, 2008, Paper 70044K.
A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightw. Technol., vol. 14, no. 1, pp. 58–65, 1996.
M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Increasing sensitivity of arc-induced long-period gratings—Pushing the fabrication technique toward its limits,” Meas. Sci. Technol., vol. 22, pp. 1–6, 2011.
K. Mullaney, S. Staines, S. W. James, and R. P. Tatam, “Optimised process for fabricating long period gratings,” Proc. SPIE, vol. 10323, 2017, Paper 103232C.
L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated using resistive filament heating,” Proc. SPIE, vol. 7004, 2008, Paper 70044K.
K. Mullaney, S. Staines, S. W. James, and R. P. Tatam, “Optimised process for fabricating long period gratings,” Proc. SPIE, vol. 10323, 2017, Paper 103232C.
T. Wang, W. Yasukochi, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas,” Sens. Actuators B, Chem., vol. 228, pp. 573–580, 2016.
M. Partridge, R. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Long period grating based toluene sensor for use with water contamination,” Sens. Actuators B, Chem., vol. 203, pp. 621–625, 2014.
S. J. Buggy, E. Chehura, S. W. James, and R. P. Tatam, “Optical fibre grating refractometers for resin cure monitoring,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S60–S65, 2007.
S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol., vol. 14, pp. R49–R61, 2003.
A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightw. Technol., vol. 14, no. 1, pp. 58–65, 1996.
T. Wang, W. Yasukochi, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas,” Sens. Actuators B, Chem., vol. 228, pp. 573–580, 2016.
X. Zhang, Z. Yin, Y. Li, F. Pang, Y. Liu, and T. Wang, “Investigation of effects of diameter on characteristics of a long-period fiber grating,” Proc. SPIE, vol. 8561, 2012, Paper 85611H.
Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys., vol. 108, no. 8, pp. 1–37, 2010.
Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys., vol. 108, 2010, Paper 081101.
D. J. Little, G. D. Marshall, and M. J. Withford, “Fabrication of periodic, resonant features in optical fibres using a CO2 laser micro-tapering system,” in Proc. 2nd Pacific Int. Conf. Appl. Laser Opt., 2006, pp. 383–386.
M. Partridge, R. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Long period grating based toluene sensor for use with water contamination,” Sens. Actuators B, Chem., vol. 203, pp. 621–625, 2014.
X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings single-side induced by long-pulse CO2 laser,” Opt. Commun., vol. 284, pp. 1232–1237, 2011.
A. D. Yablonet al., “Frozen-in viscoelasticity for novel beam expanders and high-power connectors,” J. Lightw. Technol., vol. 22, no. 1, pp. 16–23, 2004.
D. Yablonet al., “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett., vol. 84, no. 1, pp. 19–21, 2000.
X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings single-side induced by long-pulse CO2 laser,” Opt. Commun., vol. 284, pp. 1232–1237, 2011.
T. Wang, W. Yasukochi, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas,” Sens. Actuators B, Chem., vol. 228, pp. 573–580, 2016.
G. Yinet al., “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 698–701, 2014.
X. Zhang, Z. Yin, Y. Li, F. Pang, Y. Liu, and T. Wang, “Investigation of effects of diameter on characteristics of a long-period fiber grating,” Proc. SPIE, vol. 8561, 2012, Paper 85611H.
Y. Yuet al., “Temperature and refractive index measurements using long period fiber gratings fabricated by a femtosecond laser,” Proc. SPIE, vol. 8307, 2011, Paper 83071W.
X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings single-side induced by long-pulse CO2 laser,” Opt. Commun., vol. 284, pp. 1232–1237, 2011.
X. Zhang, Z. Yin, Y. Li, F. Pang, Y. Liu, and T. Wang, “Investigation of effects of diameter on characteristics of a long-period fiber grating,” Proc. SPIE, vol. 8561, 2012, Paper 85611H.
X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings single-side induced by long-pulse CO2 laser,” Opt. Commun., vol. 284, pp. 1232–1237, 2011.
L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated using resistive filament heating,” Proc. SPIE, vol. 7004, 2008, Paper 70044K.
D. Yablonet al., “Refractive index perturbations in optical fibers resulting from frozen-in viscoelasticity,” Appl. Phys. Lett., vol. 84, no. 1, pp. 19–21, 2000.
L. Marqueset al., “Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles,” Biosens. Bioelectron., vol. 75, pp. 222–231, 2016.
G. Yinet al., “Long period fiber gratings inscribed by periodically tapering a fiber,” IEEE Photon. Technol. Lett., vol. 26, no. 7, pp. 698–701, 2014.
Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys., vol. 108, 2010, Paper 081101.
Y. Wang, “Review of long period fiber gratings written by CO2 laser,” J. Appl. Phys., vol. 108, no. 8, pp. 1–37, 2010.
A. D. Yablonet al., “Frozen-in viscoelasticity for novel beam expanders and high-power connectors,” J. Lightw. Technol., vol. 22, no. 1, pp. 16–23, 2004.
H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the response of long period fiber gratings to external index of refraction,” J. Lightw. Technol., vol. 16, no. 9, pp. 1606–1612, 1998.
A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, “Long period fiber gratings as band-rejection filters,” J. Lightw. Technol., vol. 14, no. 1, pp. 58–65, 1996.
S. J. Buggy, E. Chehura, S. W. James, and R. P. Tatam, “Optical fibre grating refractometers for resin cure monitoring,” J. Opt. A: Pure Appl. Opt., vol. 9, pp. S60–S65, 2007.
P. Peterka, J. Maria, and B. Dussardier, “Long-period fiber grating as wavelength selective element in double-clad Yb-doped fiber-ring lasers,” Laser Phys. Lett., vol. 6, pp. 732–736, 2009.
S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas. Sci. Technol., vol. 14, pp. R49–R61, 2003.
M. Smietana, W. J. Bock, P. Mikulic, and J. Chen, “Increasing sensitivity of arc-induced long-period gratings—Pushing the fabrication technique toward its limits,” Meas. Sci. Technol., vol. 22, pp. 1–6, 2011.
R. Kritzinger, D. Schmieder, and A. Booysen, “Azimuthally symmetric long-period fiber grating fabrication with a TEM01 mode CO2 laser,” Meas. Sci. Technol., vol. 20, pp. 1–8, 2009.
X. Liu, M. Yan, L. Zhan, S. Luo, Z. Zhang, and Y. Xia, “Controlling of symmetric and asymmetric mode coupling in long-period fiber gratings single-side induced by long-pulse CO2 laser,” Opt. Commun., vol. 284, pp. 1232–1237, 2011.
X. Zhang, Z. Yin, Y. Li, F. Pang, Y. Liu, and T. Wang, “Investigation of effects of diameter on characteristics of a long-period fiber grating,” Proc. SPIE, vol. 8561, 2012, Paper 85611H.
K. Mullaney, S. Staines, S. W. James, and R. P. Tatam, “Optimised process for fabricating long period gratings,” Proc. SPIE, vol. 10323, 2017, Paper 103232C.
Y. Yuet al., “Temperature and refractive index measurements using long period fiber gratings fabricated by a femtosecond laser,” Proc. SPIE, vol. 8307, 2011, Paper 83071W.
M. Perez Macielet al., “Tunable wavelength erbium doped fiber linear cavity laser based on mechanically induced long-period fiber gratings,” Proc. SPIE, vol. 9958, 2016, Paper 995816.
L.-Y. Shao, J. Zhao, X. Dong, H. Y. Tam, C. Lu, and S. He, “Long-period grating fabricated using resistive filament heating,” Proc. SPIE, vol. 7004, 2008, Paper 70044K.
D. Castro Alves, J. M. P. Coelho, M. Nespereira, F. Monteiro, M. Abreu, and J. M. Rebordão, “Automation methodology for the development of LPFG using CO2 laser radiation,” Proc. SPIE, 2013, vol. 8785, Paper 87854X.
M. Partridge, R. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Long period grating based toluene sensor for use with water contamination,” Sens. Actuators B, Chem., vol. 203, pp. 621–625, 2014.
T. Wang, W. Yasukochi, S. Korposh, S. W. James, R. P. Tatam, and S.-W. Lee, “A long period grating optical fiber sensor with nano-assembled porphyrin layers for detecting ammonia gas,” Sens. Actuators B, Chem., vol. 228, pp. 573–580, 2016.
E. M. Dianovet al., “Thermo-induced long-period fibre gratings,” in Proc. Eur. Conf. Opt. Commun., Edinburgh, U.K., 1997, pp. 53–56.
K. Mullaney, “The fabrication of micro-tapered optical fibres for sensing applications,” Ph.D. dissertation, Dept. Eng. Photon., Cranfield Univ., Cranfield, U.K., 2016.
D. J. Little, G. D. Marshall, and M. J. Withford, “Fabrication of periodic, resonant features in optical fibres using a CO2 laser micro-tapering system,” in Proc. 2nd Pacific Int. Conf. Appl. Laser Opt., 2006, pp. 383–386.
OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.