Abstract

The thermal performance of Fabry–Perot InP lasers integrated onto different silicon photonics substrates by microtransfer printing is assessed. 500-μm-long ridge waveguide lasers on the original 350-μm-thick InP have an experimental thermal impedance, ZEXP, of 57 K/W that is reduced to 38 K/W after printing to a 500-μm-thick Si substrate. ZEXP for lasers printed on silicon-on-insulator wafers is ∼94 K/W, which is more than two times higher than that of the laser printed on the Si substrate. ZEXP of lasers printed on thermally insulating layers like benzocyclobutene (BCB) or SiO2 increases with the thickness of the layer. BCB adhesive layers as thin as 50 nm limit ZEXP to be greater than 55 K/W. The thermal properties for the different situations were modeled using finite-element simulations which confirmed the experimental results within 10% accuracy. The simulations show how changes in the geometry and the materials of the integration platform can influence the resulting thermal impedance.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Thomsonet al., “Roadmap on silicon photonics,” J. Opt., vol. 18, 2016, Paper no. 073003.
  2. D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nature Photon., vol. 4, pp. 511–517, 2010.
  3. G. Roelkenset al., “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev., vol. 4, pp. 1–29, 2010.
  4. B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” Opt. Express, vol. 24, no. 10, pp. 10435–10444, 2016.
  5. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express, vol. 14, no. 20, pp. 9203–9210, 2006.
  6. M. Lamponiet al., “Low-threshold heterogeneously integrated InP/SOI laser with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett., vol. 24, no. 1, pp. 76–78,  2012.
  7. B. Ben Bakiret al., “Electrically driven hybrid Si/III-V lasers based on adiabatic mode transformers,” Opt. Express, vol. 19, no. 11, pp. 10317–10325, 2011.
  8. A. W. Fanget al., “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express, vol. 5, pp. 2315–2322, 2007.
  9. B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron., vol. 52, pp. 1–17, 2017.
  10. J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nature Photon., vol. 6, no. 9, pp. 610–614, 2012.
  11. H. Yanget al., “Transfer printing stacked nanomembrane lasers on silicon,” Nature Photon., vol. 6, pp. 617–622, 2012.
  12. R. Loiet al., “Transfer printing of AlGaInAs/InP etched facet lasers to Si substrates,” IEEE Photon. J., vol. 8, no. 6,  2016, Paper no. 1504810.
  13. J. Zhanget al., “Transfer-printing-based integration of a III-V-on-silicon distributed feedback laser,” Opt. Express, vol. 26, pp. 8821–8830, 2018.
  14. A. De Grooteet al., “Transfer-printing based integration of single-mode waveguide-coupled III-V-on-silicon broadband light emitters,” Opt. Express, vol. 24, pp. 13754–13762, 2016.
  15. L. Liuet al., “On-chip optical interconnect on silicon by transfer printing,” in Proc. Conf. Lasers Electro-Opt., 2018, Paper no. STh4B.1.
  16. D. Gomezet al., “Process capability and elastomer stamp lifetime in micro transfer printing,” in Proc. 2016 IEEE 66th Electron. Compon. Technol. Conf., Las Vegas, NV, USA, 2016, pp. 680–687.
  17. J. Yoon, S. M. Lee, D. Kang, M. A. Meitl, C. A. Bower, and J. Rogers, “Heterogeneously integrated optoelectronic devices enabled by microtransfer printing,” Adv. Opt. Mater., vol. 3, no. 10, pp. 1313–1335, 2015.
  18. A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Transfer printing techniques for materials assembly and micro/nanodevice fabrication,” Adv. Mater., vol. 24, pp. 5284–5318, 2012.
  19. M. A. Meitlet al., “Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nature Mater., vol. 5, pp. 33–38, 2006.
  20. C. A. Boweret al., “Emissive displays with transfer-printed assemblies of 8 μm × 15 μm inorganic light-emitting diodes,” Photon. Res., vol. 5, no. 2, pp. A23–A29, 2017.
  21. C. Chen, T. Zhang, P. Contu, J. Klamkin, A. K. Coskun, and A. Joshi, “Sharing and placement of on-chip laser sources in silicon-photonic noCs,” in Proc. 8th IEEE/ACM Int. Symp. Netw. Chip, 2014, pp. 88–95.
  22. Z. H. Quan, J. Justice, M. B. Mooney, M. A. Gubbins, P. J. Parbrook, and B. Corbett, “Thermal modelling of transfer-bonded thin-film gallium arsenide laser diode,” IET Optoelectron., vol. 10, pp. 51–56, 2016.
  23. M. Sysaket al., “Experimental and theoretical thermal analysis of a hybrid silicon evanescent laser,” Opt. Express, vol. 15, pp. 15041–15046, 2007.
  24. M. N. Sysaket al., “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 6, pp. 1490–1498,  2011.
  25. S. Cheung, Y. Kawakita, K. Shang, and S. J. B. Yoo, “Theory and design optimization of energy-efficient hydrophobic wafer-bonded III-V/Si hybrid semiconductor optical amplifiers,” J. Lightw. Technol., vol. 31, no. 24, pp. 4057–4066,  2013.
  26. G. Roelkenset al., “III-V/Si photonics by die-to-wafer bonding,” Mater. Today, vol. 10, nos. 7/8, pp. 36–43, 2007.
  27. B. Song, L. Megalini, S. Dwivedi, S. Ristic, and J. Klamkin, “High-thermal performance 3D hybrid silicon lasers,” IEEE Photon. Technol. Lett., vol. 29, no. 14, pp. 1143–1146,  2017.
  28. R. Loiet al., “Micro-transfer printing for advanced scalable hybrid photonic integration,” in Proc. Eur. Conf. Integr. Opt., 2018, Paper no. Th.1.A.5 15.
  29. J. Juvertet al., “Integration of etched facet, electrically pumped, C-band Fabry-Pérot lasers on a silicon photonic integrated circuit by transfer printing,” Opt. Express, vol. 26, pp. 21443–21454, 2018.
  30. J. O'Callaghanet al., “Comparison of InGaAs and InAlAs sacrificial layers for release of InP-based devices,” Opt. Mater. Express, vol. 7, pp. 4408–4414, 2017.
  31. J. Piprek, J. Patrick, A. Patrick, and J. E. Bowers, “Carrier non-uniformity effects on the internal efficiency of multiquantum-well lasers,” Appl. Phys. Lett., vol. 74, no. 4, pp. 489–49, 1999.
  32. J. Piprek, J. K. White, and A. J. SpringThorpe, “What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?,” IEEE J. Quantum Electron., vol. 38, no. 9, pp. 1253–1259,  2002.
  33. COMSOL V4.0 Heat Transfer Theory, COMSOL, Burlington, MA, USA, 2010.
  34. S. Adachi, “Lattice thermal resistivity of III–V compound alloys,” J. Appl. Phys., vol. 54, no. 4, pp. 1844–1848, 1983.
  35. S. Adachi, “Lattice thermal conductivity of group-IV and III–V semiconductor alloys,” J. Appl. Phys., vol. 102, no. 6, 2007, Paper no. 063502.

2018 (2)

2017 (4)

J. O'Callaghanet al., “Comparison of InGaAs and InAlAs sacrificial layers for release of InP-based devices,” Opt. Mater. Express, vol. 7, pp. 4408–4414, 2017.

B. Song, L. Megalini, S. Dwivedi, S. Ristic, and J. Klamkin, “High-thermal performance 3D hybrid silicon lasers,” IEEE Photon. Technol. Lett., vol. 29, no. 14, pp. 1143–1146,  2017.

C. A. Boweret al., “Emissive displays with transfer-printed assemblies of 8 μm × 15 μm inorganic light-emitting diodes,” Photon. Res., vol. 5, no. 2, pp. A23–A29, 2017.

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron., vol. 52, pp. 1–17, 2017.

2016 (5)

D. Thomsonet al., “Roadmap on silicon photonics,” J. Opt., vol. 18, 2016, Paper no. 073003.

B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” Opt. Express, vol. 24, no. 10, pp. 10435–10444, 2016.

Z. H. Quan, J. Justice, M. B. Mooney, M. A. Gubbins, P. J. Parbrook, and B. Corbett, “Thermal modelling of transfer-bonded thin-film gallium arsenide laser diode,” IET Optoelectron., vol. 10, pp. 51–56, 2016.

R. Loiet al., “Transfer printing of AlGaInAs/InP etched facet lasers to Si substrates,” IEEE Photon. J., vol. 8, no. 6,  2016, Paper no. 1504810.

A. De Grooteet al., “Transfer-printing based integration of single-mode waveguide-coupled III-V-on-silicon broadband light emitters,” Opt. Express, vol. 24, pp. 13754–13762, 2016.

2015 (1)

J. Yoon, S. M. Lee, D. Kang, M. A. Meitl, C. A. Bower, and J. Rogers, “Heterogeneously integrated optoelectronic devices enabled by microtransfer printing,” Adv. Opt. Mater., vol. 3, no. 10, pp. 1313–1335, 2015.

2013 (1)

S. Cheung, Y. Kawakita, K. Shang, and S. J. B. Yoo, “Theory and design optimization of energy-efficient hydrophobic wafer-bonded III-V/Si hybrid semiconductor optical amplifiers,” J. Lightw. Technol., vol. 31, no. 24, pp. 4057–4066,  2013.

2012 (4)

A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Transfer printing techniques for materials assembly and micro/nanodevice fabrication,” Adv. Mater., vol. 24, pp. 5284–5318, 2012.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nature Photon., vol. 6, no. 9, pp. 610–614, 2012.

H. Yanget al., “Transfer printing stacked nanomembrane lasers on silicon,” Nature Photon., vol. 6, pp. 617–622, 2012.

M. Lamponiet al., “Low-threshold heterogeneously integrated InP/SOI laser with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett., vol. 24, no. 1, pp. 76–78,  2012.

2011 (2)

B. Ben Bakiret al., “Electrically driven hybrid Si/III-V lasers based on adiabatic mode transformers,” Opt. Express, vol. 19, no. 11, pp. 10317–10325, 2011.

M. N. Sysaket al., “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 6, pp. 1490–1498,  2011.

2010 (2)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nature Photon., vol. 4, pp. 511–517, 2010.

G. Roelkenset al., “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev., vol. 4, pp. 1–29, 2010.

2007 (4)

A. W. Fanget al., “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express, vol. 5, pp. 2315–2322, 2007.

M. Sysaket al., “Experimental and theoretical thermal analysis of a hybrid silicon evanescent laser,” Opt. Express, vol. 15, pp. 15041–15046, 2007.

G. Roelkenset al., “III-V/Si photonics by die-to-wafer bonding,” Mater. Today, vol. 10, nos. 7/8, pp. 36–43, 2007.

S. Adachi, “Lattice thermal conductivity of group-IV and III–V semiconductor alloys,” J. Appl. Phys., vol. 102, no. 6, 2007, Paper no. 063502.

2006 (2)

M. A. Meitlet al., “Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nature Mater., vol. 5, pp. 33–38, 2006.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express, vol. 14, no. 20, pp. 9203–9210, 2006.

2002 (1)

J. Piprek, J. K. White, and A. J. SpringThorpe, “What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?,” IEEE J. Quantum Electron., vol. 38, no. 9, pp. 1253–1259,  2002.

1999 (1)

J. Piprek, J. Patrick, A. Patrick, and J. E. Bowers, “Carrier non-uniformity effects on the internal efficiency of multiquantum-well lasers,” Appl. Phys. Lett., vol. 74, no. 4, pp. 489–49, 1999.

1983 (1)

S. Adachi, “Lattice thermal resistivity of III–V compound alloys,” J. Appl. Phys., vol. 54, no. 4, pp. 1844–1848, 1983.

Adachi, S.

S. Adachi, “Lattice thermal conductivity of group-IV and III–V semiconductor alloys,” J. Appl. Phys., vol. 102, no. 6, 2007, Paper no. 063502.

S. Adachi, “Lattice thermal resistivity of III–V compound alloys,” J. Appl. Phys., vol. 54, no. 4, pp. 1844–1848, 1983.

Behfar, A.

Ben Bakir, B.

Bowen, A. M.

A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Transfer printing techniques for materials assembly and micro/nanodevice fabrication,” Adv. Mater., vol. 24, pp. 5284–5318, 2012.

Bower, C.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nature Photon., vol. 6, no. 9, pp. 610–614, 2012.

Bower, C. A.

C. A. Boweret al., “Emissive displays with transfer-printed assemblies of 8 μm × 15 μm inorganic light-emitting diodes,” Photon. Res., vol. 5, no. 2, pp. A23–A29, 2017.

J. Yoon, S. M. Lee, D. Kang, M. A. Meitl, C. A. Bower, and J. Rogers, “Heterogeneously integrated optoelectronic devices enabled by microtransfer printing,” Adv. Opt. Mater., vol. 3, no. 10, pp. 1313–1335, 2015.

Bowers, J. E.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nature Photon., vol. 4, pp. 511–517, 2010.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express, vol. 14, no. 20, pp. 9203–9210, 2006.

J. Piprek, J. Patrick, A. Patrick, and J. E. Bowers, “Carrier non-uniformity effects on the internal efficiency of multiquantum-well lasers,” Appl. Phys. Lett., vol. 74, no. 4, pp. 489–49, 1999.

Carlson, A.

A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Transfer printing techniques for materials assembly and micro/nanodevice fabrication,” Adv. Mater., vol. 24, pp. 5284–5318, 2012.

Chen, C.

C. Chen, T. Zhang, P. Contu, J. Klamkin, A. K. Coskun, and A. Joshi, “Sharing and placement of on-chip laser sources in silicon-photonic noCs,” in Proc. 8th IEEE/ACM Int. Symp. Netw. Chip, 2014, pp. 88–95.

Cheung, S.

S. Cheung, Y. Kawakita, K. Shang, and S. J. B. Yoo, “Theory and design optimization of energy-efficient hydrophobic wafer-bonded III-V/Si hybrid semiconductor optical amplifiers,” J. Lightw. Technol., vol. 31, no. 24, pp. 4057–4066,  2013.

Cohen, O.

Contu, P.

C. Chen, T. Zhang, P. Contu, J. Klamkin, A. K. Coskun, and A. Joshi, “Sharing and placement of on-chip laser sources in silicon-photonic noCs,” in Proc. 8th IEEE/ACM Int. Symp. Netw. Chip, 2014, pp. 88–95.

Corbett, B.

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron., vol. 52, pp. 1–17, 2017.

Z. H. Quan, J. Justice, M. B. Mooney, M. A. Gubbins, P. J. Parbrook, and B. Corbett, “Thermal modelling of transfer-bonded thin-film gallium arsenide laser diode,” IET Optoelectron., vol. 10, pp. 51–56, 2016.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nature Photon., vol. 6, no. 9, pp. 610–614, 2012.

Coskun, A. K.

C. Chen, T. Zhang, P. Contu, J. Klamkin, A. K. Coskun, and A. Joshi, “Sharing and placement of on-chip laser sources in silicon-photonic noCs,” in Proc. 8th IEEE/ACM Int. Symp. Netw. Chip, 2014, pp. 88–95.

De Groote, A.

Dwivedi, S.

B. Song, L. Megalini, S. Dwivedi, S. Ristic, and J. Klamkin, “High-thermal performance 3D hybrid silicon lasers,” IEEE Photon. Technol. Lett., vol. 29, no. 14, pp. 1143–1146,  2017.

Fang, A. W.

A. W. Fanget al., “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express, vol. 5, pp. 2315–2322, 2007.

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express, vol. 14, no. 20, pp. 9203–9210, 2006.

Gomez, D.

D. Gomezet al., “Process capability and elastomer stamp lifetime in micro transfer printing,” in Proc. 2016 IEEE 66th Electron. Compon. Technol. Conf., Las Vegas, NV, USA, 2016, pp. 680–687.

Gubbins, M. A.

Z. H. Quan, J. Justice, M. B. Mooney, M. A. Gubbins, P. J. Parbrook, and B. Corbett, “Thermal modelling of transfer-bonded thin-film gallium arsenide laser diode,” IET Optoelectron., vol. 10, pp. 51–56, 2016.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nature Photon., vol. 6, no. 9, pp. 610–614, 2012.

Huang, Y.

A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Transfer printing techniques for materials assembly and micro/nanodevice fabrication,” Adv. Mater., vol. 24, pp. 5284–5318, 2012.

Jones, R.

Joshi, A.

C. Chen, T. Zhang, P. Contu, J. Klamkin, A. K. Coskun, and A. Joshi, “Sharing and placement of on-chip laser sources in silicon-photonic noCs,” in Proc. 8th IEEE/ACM Int. Symp. Netw. Chip, 2014, pp. 88–95.

Justice, J.

Z. H. Quan, J. Justice, M. B. Mooney, M. A. Gubbins, P. J. Parbrook, and B. Corbett, “Thermal modelling of transfer-bonded thin-film gallium arsenide laser diode,” IET Optoelectron., vol. 10, pp. 51–56, 2016.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nature Photon., vol. 6, no. 9, pp. 610–614, 2012.

Juvert, J.

Kang, D.

J. Yoon, S. M. Lee, D. Kang, M. A. Meitl, C. A. Bower, and J. Rogers, “Heterogeneously integrated optoelectronic devices enabled by microtransfer printing,” Adv. Opt. Mater., vol. 3, no. 10, pp. 1313–1335, 2015.

Kawakita, Y.

S. Cheung, Y. Kawakita, K. Shang, and S. J. B. Yoo, “Theory and design optimization of energy-efficient hydrophobic wafer-bonded III-V/Si hybrid semiconductor optical amplifiers,” J. Lightw. Technol., vol. 31, no. 24, pp. 4057–4066,  2013.

Klamkin, J.

B. Song, L. Megalini, S. Dwivedi, S. Ristic, and J. Klamkin, “High-thermal performance 3D hybrid silicon lasers,” IEEE Photon. Technol. Lett., vol. 29, no. 14, pp. 1143–1146,  2017.

B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” Opt. Express, vol. 24, no. 10, pp. 10435–10444, 2016.

C. Chen, T. Zhang, P. Contu, J. Klamkin, A. K. Coskun, and A. Joshi, “Sharing and placement of on-chip laser sources in silicon-photonic noCs,” in Proc. 8th IEEE/ACM Int. Symp. Netw. Chip, 2014, pp. 88–95.

Lamponi, M.

M. Lamponiet al., “Low-threshold heterogeneously integrated InP/SOI laser with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett., vol. 24, no. 1, pp. 76–78,  2012.

Lee, S. M.

J. Yoon, S. M. Lee, D. Kang, M. A. Meitl, C. A. Bower, and J. Rogers, “Heterogeneously integrated optoelectronic devices enabled by microtransfer printing,” Adv. Opt. Mater., vol. 3, no. 10, pp. 1313–1335, 2015.

Liang, D.

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nature Photon., vol. 4, pp. 511–517, 2010.

Liu, D.

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron., vol. 52, pp. 1–17, 2017.

Liu, L.

L. Liuet al., “On-chip optical interconnect on silicon by transfer printing,” in Proc. Conf. Lasers Electro-Opt., 2018, Paper no. STh4B.1.

Loi, R.

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron., vol. 52, pp. 1–17, 2017.

R. Loiet al., “Transfer printing of AlGaInAs/InP etched facet lasers to Si substrates,” IEEE Photon. J., vol. 8, no. 6,  2016, Paper no. 1504810.

R. Loiet al., “Micro-transfer printing for advanced scalable hybrid photonic integration,” in Proc. Eur. Conf. Integr. Opt., 2018, Paper no. Th.1.A.5 15.

Ma, Z.

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron., vol. 52, pp. 1–17, 2017.

Megalini, L.

B. Song, L. Megalini, S. Dwivedi, S. Ristic, and J. Klamkin, “High-thermal performance 3D hybrid silicon lasers,” IEEE Photon. Technol. Lett., vol. 29, no. 14, pp. 1143–1146,  2017.

Meitl, M.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nature Photon., vol. 6, no. 9, pp. 610–614, 2012.

Meitl, M. A.

J. Yoon, S. M. Lee, D. Kang, M. A. Meitl, C. A. Bower, and J. Rogers, “Heterogeneously integrated optoelectronic devices enabled by microtransfer printing,” Adv. Opt. Mater., vol. 3, no. 10, pp. 1313–1335, 2015.

M. A. Meitlet al., “Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nature Mater., vol. 5, pp. 33–38, 2006.

Mooney, M. B.

Z. H. Quan, J. Justice, M. B. Mooney, M. A. Gubbins, P. J. Parbrook, and B. Corbett, “Thermal modelling of transfer-bonded thin-film gallium arsenide laser diode,” IET Optoelectron., vol. 10, pp. 51–56, 2016.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nature Photon., vol. 6, no. 9, pp. 610–614, 2012.

Nuzzo, R. G.

A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Transfer printing techniques for materials assembly and micro/nanodevice fabrication,” Adv. Mater., vol. 24, pp. 5284–5318, 2012.

O'Callaghan, J.

Paniccia, M. J.

Parbrook, P. J.

Z. H. Quan, J. Justice, M. B. Mooney, M. A. Gubbins, P. J. Parbrook, and B. Corbett, “Thermal modelling of transfer-bonded thin-film gallium arsenide laser diode,” IET Optoelectron., vol. 10, pp. 51–56, 2016.

Park, H.

Patrick, A.

J. Piprek, J. Patrick, A. Patrick, and J. E. Bowers, “Carrier non-uniformity effects on the internal efficiency of multiquantum-well lasers,” Appl. Phys. Lett., vol. 74, no. 4, pp. 489–49, 1999.

Patrick, J.

J. Piprek, J. Patrick, A. Patrick, and J. E. Bowers, “Carrier non-uniformity effects on the internal efficiency of multiquantum-well lasers,” Appl. Phys. Lett., vol. 74, no. 4, pp. 489–49, 1999.

Piprek, J.

J. Piprek, J. K. White, and A. J. SpringThorpe, “What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?,” IEEE J. Quantum Electron., vol. 38, no. 9, pp. 1253–1259,  2002.

J. Piprek, J. Patrick, A. Patrick, and J. E. Bowers, “Carrier non-uniformity effects on the internal efficiency of multiquantum-well lasers,” Appl. Phys. Lett., vol. 74, no. 4, pp. 489–49, 1999.

Quan, Z. H.

Z. H. Quan, J. Justice, M. B. Mooney, M. A. Gubbins, P. J. Parbrook, and B. Corbett, “Thermal modelling of transfer-bonded thin-film gallium arsenide laser diode,” IET Optoelectron., vol. 10, pp. 51–56, 2016.

Ristic, S.

B. Song, L. Megalini, S. Dwivedi, S. Ristic, and J. Klamkin, “High-thermal performance 3D hybrid silicon lasers,” IEEE Photon. Technol. Lett., vol. 29, no. 14, pp. 1143–1146,  2017.

B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” Opt. Express, vol. 24, no. 10, pp. 10435–10444, 2016.

Roelkens, G.

G. Roelkenset al., “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev., vol. 4, pp. 1–29, 2010.

G. Roelkenset al., “III-V/Si photonics by die-to-wafer bonding,” Mater. Today, vol. 10, nos. 7/8, pp. 36–43, 2007.

Rogers, J.

J. Yoon, S. M. Lee, D. Kang, M. A. Meitl, C. A. Bower, and J. Rogers, “Heterogeneously integrated optoelectronic devices enabled by microtransfer printing,” Adv. Opt. Mater., vol. 3, no. 10, pp. 1313–1335, 2015.

Rogers, J. A.

A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Transfer printing techniques for materials assembly and micro/nanodevice fabrication,” Adv. Mater., vol. 24, pp. 5284–5318, 2012.

Shang, K.

S. Cheung, Y. Kawakita, K. Shang, and S. J. B. Yoo, “Theory and design optimization of energy-efficient hydrophobic wafer-bonded III-V/Si hybrid semiconductor optical amplifiers,” J. Lightw. Technol., vol. 31, no. 24, pp. 4057–4066,  2013.

Song, B.

B. Song, L. Megalini, S. Dwivedi, S. Ristic, and J. Klamkin, “High-thermal performance 3D hybrid silicon lasers,” IEEE Photon. Technol. Lett., vol. 29, no. 14, pp. 1143–1146,  2017.

B. Song, C. Stagarescu, S. Ristic, A. Behfar, and J. Klamkin, “3D integrated hybrid silicon laser,” Opt. Express, vol. 24, no. 10, pp. 10435–10444, 2016.

SpringThorpe, A. J.

J. Piprek, J. K. White, and A. J. SpringThorpe, “What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?,” IEEE J. Quantum Electron., vol. 38, no. 9, pp. 1253–1259,  2002.

Stagarescu, C.

Sysak, M.

Sysak, M. N.

M. N. Sysaket al., “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 6, pp. 1490–1498,  2011.

Thomson, D.

D. Thomsonet al., “Roadmap on silicon photonics,” J. Opt., vol. 18, 2016, Paper no. 073003.

White, J. K.

J. Piprek, J. K. White, and A. J. SpringThorpe, “What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?,” IEEE J. Quantum Electron., vol. 38, no. 9, pp. 1253–1259,  2002.

Yang, H.

H. Yanget al., “Transfer printing stacked nanomembrane lasers on silicon,” Nature Photon., vol. 6, pp. 617–622, 2012.

Yoo, S. J. B.

S. Cheung, Y. Kawakita, K. Shang, and S. J. B. Yoo, “Theory and design optimization of energy-efficient hydrophobic wafer-bonded III-V/Si hybrid semiconductor optical amplifiers,” J. Lightw. Technol., vol. 31, no. 24, pp. 4057–4066,  2013.

Yoon, J.

J. Yoon, S. M. Lee, D. Kang, M. A. Meitl, C. A. Bower, and J. Rogers, “Heterogeneously integrated optoelectronic devices enabled by microtransfer printing,” Adv. Opt. Mater., vol. 3, no. 10, pp. 1313–1335, 2015.

Zhang, J.

Zhang, T.

C. Chen, T. Zhang, P. Contu, J. Klamkin, A. K. Coskun, and A. Joshi, “Sharing and placement of on-chip laser sources in silicon-photonic noCs,” in Proc. 8th IEEE/ACM Int. Symp. Netw. Chip, 2014, pp. 88–95.

Zhou, W.

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron., vol. 52, pp. 1–17, 2017.

Adv. Mater. (1)

A. Carlson, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, “Transfer printing techniques for materials assembly and micro/nanodevice fabrication,” Adv. Mater., vol. 24, pp. 5284–5318, 2012.

Adv. Opt. Mater. (1)

J. Yoon, S. M. Lee, D. Kang, M. A. Meitl, C. A. Bower, and J. Rogers, “Heterogeneously integrated optoelectronic devices enabled by microtransfer printing,” Adv. Opt. Mater., vol. 3, no. 10, pp. 1313–1335, 2015.

Appl. Phys. Lett. (1)

J. Piprek, J. Patrick, A. Patrick, and J. E. Bowers, “Carrier non-uniformity effects on the internal efficiency of multiquantum-well lasers,” Appl. Phys. Lett., vol. 74, no. 4, pp. 489–49, 1999.

IEEE J. Quantum Electron. (1)

J. Piprek, J. K. White, and A. J. SpringThorpe, “What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?,” IEEE J. Quantum Electron., vol. 38, no. 9, pp. 1253–1259,  2002.

IEEE J. Sel. Topics Quantum Electron. (1)

M. N. Sysaket al., “Hybrid silicon laser technology: A thermal perspective,” IEEE J. Sel. Topics Quantum Electron., vol. 17, no. 6, pp. 1490–1498,  2011.

IEEE Photon. J. (1)

R. Loiet al., “Transfer printing of AlGaInAs/InP etched facet lasers to Si substrates,” IEEE Photon. J., vol. 8, no. 6,  2016, Paper no. 1504810.

IEEE Photon. Technol. Lett. (2)

M. Lamponiet al., “Low-threshold heterogeneously integrated InP/SOI laser with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett., vol. 24, no. 1, pp. 76–78,  2012.

B. Song, L. Megalini, S. Dwivedi, S. Ristic, and J. Klamkin, “High-thermal performance 3D hybrid silicon lasers,” IEEE Photon. Technol. Lett., vol. 29, no. 14, pp. 1143–1146,  2017.

IET Optoelectron. (1)

Z. H. Quan, J. Justice, M. B. Mooney, M. A. Gubbins, P. J. Parbrook, and B. Corbett, “Thermal modelling of transfer-bonded thin-film gallium arsenide laser diode,” IET Optoelectron., vol. 10, pp. 51–56, 2016.

J. Appl. Phys. (2)

S. Adachi, “Lattice thermal resistivity of III–V compound alloys,” J. Appl. Phys., vol. 54, no. 4, pp. 1844–1848, 1983.

S. Adachi, “Lattice thermal conductivity of group-IV and III–V semiconductor alloys,” J. Appl. Phys., vol. 102, no. 6, 2007, Paper no. 063502.

J. Lightw. Technol. (1)

S. Cheung, Y. Kawakita, K. Shang, and S. J. B. Yoo, “Theory and design optimization of energy-efficient hydrophobic wafer-bonded III-V/Si hybrid semiconductor optical amplifiers,” J. Lightw. Technol., vol. 31, no. 24, pp. 4057–4066,  2013.

J. Opt. (1)

D. Thomsonet al., “Roadmap on silicon photonics,” J. Opt., vol. 18, 2016, Paper no. 073003.

Laser Photon. Rev. (1)

G. Roelkenset al., “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photon. Rev., vol. 4, pp. 1–29, 2010.

Mater. Today (1)

G. Roelkenset al., “III-V/Si photonics by die-to-wafer bonding,” Mater. Today, vol. 10, nos. 7/8, pp. 36–43, 2007.

Nature Mater. (1)

M. A. Meitlet al., “Transfer printing by kinetic control of adhesion to an elastomeric stamp,” Nature Mater., vol. 5, pp. 33–38, 2006.

Nature Photon. (3)

D. Liang and J. E. Bowers, “Recent progress in lasers on silicon,” Nature Photon., vol. 4, pp. 511–517, 2010.

J. Justice, C. Bower, M. Meitl, M. B. Mooney, M. A. Gubbins, and B. Corbett, “Wafer-scale integration of group III-V lasers on silicon using transfer printing of epitaxial layers,” Nature Photon., vol. 6, no. 9, pp. 610–614, 2012.

H. Yanget al., “Transfer printing stacked nanomembrane lasers on silicon,” Nature Photon., vol. 6, pp. 617–622, 2012.

Opt. Express (8)

Opt. Mater. Express (1)

Photon. Res. (1)

Prog. Quantum Electron. (1)

B. Corbett, R. Loi, W. Zhou, D. Liu, and Z. Ma, “Transfer print techniques for heterogeneous integration of photonic components,” Prog. Quantum Electron., vol. 52, pp. 1–17, 2017.

Other (5)

C. Chen, T. Zhang, P. Contu, J. Klamkin, A. K. Coskun, and A. Joshi, “Sharing and placement of on-chip laser sources in silicon-photonic noCs,” in Proc. 8th IEEE/ACM Int. Symp. Netw. Chip, 2014, pp. 88–95.

L. Liuet al., “On-chip optical interconnect on silicon by transfer printing,” in Proc. Conf. Lasers Electro-Opt., 2018, Paper no. STh4B.1.

D. Gomezet al., “Process capability and elastomer stamp lifetime in micro transfer printing,” in Proc. 2016 IEEE 66th Electron. Compon. Technol. Conf., Las Vegas, NV, USA, 2016, pp. 680–687.

COMSOL V4.0 Heat Transfer Theory, COMSOL, Burlington, MA, USA, 2010.

R. Loiet al., “Micro-transfer printing for advanced scalable hybrid photonic integration,” in Proc. Eur. Conf. Integr. Opt., 2018, Paper no. Th.1.A.5 15.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.