Abstract

Radio-frequency (RF) photonics is demonstrating superior performance in communication systems using discrete components. As systems establish an upgrade path balancing challenging bandwidth requirements with size, weight, and power constraints, the time is ripe for transition to a more efficient and cost-effective hybrid manufacturing technology. This technology has been applied to the construction of an optical coherent receiver for the down conversion of RF signals from 10–18 to 2 GHz. Light from a distributed feedback semiconductor laser is split between two lithium niobate Mach-Zehnder modulators, driven either by a tunable local oscillator tone or an RF signal coming, for example, from a receiving antenna. The modulated light signals are combined with an optical coupler and filtered by two fiber Bragg gratings that select one optical sideband from each signal. Detection of the filtered light by a balanced photo-detector produces an electrical signal at an intermediate frequency equal to the beat difference between the frequencies of the RF signal and the local oscillator. Packaging of optical and opto-electronic components within a common enclosure where light routing is performed by micro-optics has allowed a significant decrease in the size, weight, and power consumption of the receiver.

© 2018 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription