Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 36,
  • Issue 20,
  • pp. 5003-5009
  • (2018)

Toward On-Chip MEMS-Based Optical Autocorrelator

Not Accessible

Your library or personal account may give you access

Abstract

We propose a compact Microelectromechanical Systems (MEMS)-based optical autocorrelator based on a micromachined Michelson interferometer in silicon and the two csv nonlinearity in a photodetector. The miniaturized autocorrelator has a scanning range of 1.2 ps and operates in the wavelength range of 1100–2000 nm. The device measures the interferometric autocorrelation due to its collinear nature, from which the intensity autocorrelation can be calculated. The field autocorrelation can also be measured, from which the optical pulse spectrum can be calculated. A theoretical model based on Gaussian beam propagation is developed to study the effect of optical beam divergence, pulse dispersion, tilt angle between the interferometer mirrors, and amplitude mismatch between the interfering pulses. This model explains many of the effects observed in experimental measurements due to the use of a MEMS interferometer. The experimental results of autocorrelation signals for several pulses in the order of 100 fs are compared to a commercial autocorrelator and a good match is found.

© 2018 IEEE

PDF Article
More Like This
An autocorrelator based on a Fabry-Perot interferometer

Jungkwuen An, Kyungsuk Pyun, Ojoon Kwon, and Dong Eon Kim
Opt. Express 21(1) 70-78 (2013)

MEMS-based optical limiter

Jed Khoury, Bahareh Haji-saeed, William D. Goodhue, Charles L. Woods, and John Kierstead
Appl. Opt. 47(29) 5468-5472 (2008)

Fourier transform infrared spectrometer based on an electrothermal MEMS mirror

Donglin Wang, Hongqiong Liu, Jicheng Zhang, Qiao Chen, Wei Wang, Xiaoyang Zhang, and Huikai Xie
Appl. Opt. 57(21) 5956-5961 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.