Abstract

The growing traffic demand in interdata center and metro communications requires high-speed and low-cost transceivers that can flexibly adapt to different transmission distances of up to a few hundred km. Ultimately low-cost transceivers will use the simplest optical hardware, namely a directly modulated transmitter and direct detection receiver. Using optical injection-locked directly modulated lasers, we propose a transmitter that can control the full field of the optical signal and achieve error-free transmission over up to 300 km of dispersion uncompensated SMF-28. We demonstrate such a transmission system and discuss its potential for short- and medium-reach communication systems.

© 2018 CCBY

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Karinou, N. Stojanovic, and Z. Yu, “Toward cost-efficient 100G metro networks using IM/DD, 10-GHz components, and MLSE receiver,” J. Lightw. Technol., vol. 33, no. 19, pp. 4109–4117, 2015.
  2. X. Chenet al., “218-Gb/s single-wavelength, single-polarization, single photodiode transmission over 125-km of standard singlemode fiber using Kramers-Kronig detection” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th5B.6.
  3. S. Leet al., “8 × 256 Gbps virtual-carrier assisted WDM direct-detection transmission over a single span of 200 km,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.PDP.B.1.
  4. Z. Liet al., “SSBI mitigation and the Kramers-Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightw. Technol., vol. 35, no. 10, pp. 1887–1893, 2017.
  5. M. Birket al., “First 400GBASE-LR8 interoperability using CFP8 modules,” in Proc. Opt. Fiber Commun. Conf, 2017, Paper Th5B.7.
  6. N. Eiseltet al., “First real-time 400G PAM-4 demonstration for inter-data center transmission over 100 km of SSMF at 1550 nm,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper W1K.5.
  7. Roi Rathet al., “Tomlinson–Harashima precoding for dispersion uncompensated PAM-4 transmission with direct-detection,” J. Lightw. Technol., vol. 35, no. 18, pp. 3909–3917, 2017.
  8. Y. Matsuiet al., “55-GHz bandwidth short-cavity distributed reflector laser and its application to 112-Gb/s PAM-4,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Th5B.4.
  9. S. Zhouet al., “Transmission of 2 × 56 Gb/s PAM-4 signal over 100 km SSMF using 18 GHz DMLs,” Opt. Lett., vol. 41, pp. 1805–1808, 2016.
  10. D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1126–1139, 2010.
  11. E. Lau, X. Zhao, H. Sung, D. Parekh, C. Chang-Hasnain, and M. Wu, “Strong optical injection-locked semiconductor lasers demonstrating >100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express, vol. 16, pp. 6609–6618, 2008.
  12. Z. Liuet al., “300-km transmission of dispersion pre-compensated PAM4 using direct modulation and direct detection,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th3D.6.
  13. T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 7, no. 7, pp. 709–711, 1995.
  14. E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Topics Quantum Electron., vol. 15, no. 3, pp. 618–633, 2009.
  15. Z. Liuet al., “Modulator-free quadrature amplitude modulation signal synthesis,” Nature Commun., vol. 5, 2014, Art. no. .
  16. G. Yabre, “Effect of relatively strong light injection on the chirp-to-power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers,” J. Lightw. Technol., vol. 14, no. 10, pp. 2367–2373, 1996.
  17. R. Slavik, J. Kakande, R. Phelan, J. O'Carroll, B. Kelly, and D. J. Richardson, “QAM synthesis by direct modulation of semiconductor lasers under injection locking,” in Proc. Opt. Fiber Commun. Conf., 2013, Paper JTh2A.32.
  18. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron., vol. 18, no. 6, pp. 976–983, 1982.
  19. B. W. Hakki, “Evaluation of transmission characteristics of chirped DFB lasers in dispersive optical fiber,” J. Lightw. Technol., vol. 10, no. 7, pp. 964–970, 1992.
  20. F. Buchaliet al., “Implementation of 64QAM at 42.66 GBaud using 1.5 samples per symbol DAC and demonstration of up to 300 km fiber transmission,” in Proc. Opt. Fiber Commun. Conf., 2014, Paper M2A.1.
  21. S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1164–1179, 2010.
  22. Z. Liu, B. Kelly, J. Ocarroll, R. Phelan, D. J. Richardson, and R. Slavik, “Discrete multitone format for repeater-less direct-modulation direct-detection over 150 km,” J. Lightw. Technol., vol. 34, no. 13, pp. 3223–3229, 2016.
  23. S. Kobayashi and T. Kimura, “Optical phase modulation in an injection locked AlGaAs semiconductor laser,” IEEE Trans. Microw. Theory Techn., vol. 30, no. 10, pp. 1650–1657, 1982.
  24. H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photon. Technol. Lett., vol. 12, no. 10, pp. 1298–1300, 2000.
  25. H. Bülow, F. Buchali, and A. Klekamp, “Electronic dispersion compensation,” J. Lightw. Technol., vol. 26, no. 1, pp. 158–167, 2008.
  26. B. P. P. Kuo, E. Myslivets, V. Ataie, E. G. Temprana, N. Alic, and S. Radic, “Wideband parametric frequency comb as coherent optical carrier,” J. Lightw. Technol., vol. 31, no. 21, pp. 3414–3419, 2013.
  27. R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach-Zehnder modulator platform for 10/40/100/200-Gb/s operation,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 6, 2013, Art. no. .
  28. Z. Liu, S. Farwell, M. Wale, D. J. Richardson, and R. Slavík, “InP-based optical comb-locked tunable transmitter,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Tu2K.2.

2017 (2)

Z. Liet al., “SSBI mitigation and the Kramers-Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightw. Technol., vol. 35, no. 10, pp. 1887–1893, 2017.

Roi Rathet al., “Tomlinson–Harashima precoding for dispersion uncompensated PAM-4 transmission with direct-detection,” J. Lightw. Technol., vol. 35, no. 18, pp. 3909–3917, 2017.

2016 (2)

Z. Liu, B. Kelly, J. Ocarroll, R. Phelan, D. J. Richardson, and R. Slavik, “Discrete multitone format for repeater-less direct-modulation direct-detection over 150 km,” J. Lightw. Technol., vol. 34, no. 13, pp. 3223–3229, 2016.

S. Zhouet al., “Transmission of 2 × 56 Gb/s PAM-4 signal over 100 km SSMF using 18 GHz DMLs,” Opt. Lett., vol. 41, pp. 1805–1808, 2016.

2015 (1)

F. Karinou, N. Stojanovic, and Z. Yu, “Toward cost-efficient 100G metro networks using IM/DD, 10-GHz components, and MLSE receiver,” J. Lightw. Technol., vol. 33, no. 19, pp. 4109–4117, 2015.

2014 (1)

Z. Liuet al., “Modulator-free quadrature amplitude modulation signal synthesis,” Nature Commun., vol. 5, 2014, Art. no. .

2013 (2)

B. P. P. Kuo, E. Myslivets, V. Ataie, E. G. Temprana, N. Alic, and S. Radic, “Wideband parametric frequency comb as coherent optical carrier,” J. Lightw. Technol., vol. 31, no. 21, pp. 3414–3419, 2013.

R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach-Zehnder modulator platform for 10/40/100/200-Gb/s operation,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 6, 2013, Art. no. .

2010 (2)

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1126–1139, 2010.

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1164–1179, 2010.

2009 (1)

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Topics Quantum Electron., vol. 15, no. 3, pp. 618–633, 2009.

2008 (2)

2000 (1)

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photon. Technol. Lett., vol. 12, no. 10, pp. 1298–1300, 2000.

1996 (1)

G. Yabre, “Effect of relatively strong light injection on the chirp-to-power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers,” J. Lightw. Technol., vol. 14, no. 10, pp. 2367–2373, 1996.

1995 (1)

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 7, no. 7, pp. 709–711, 1995.

1992 (1)

B. W. Hakki, “Evaluation of transmission characteristics of chirped DFB lasers in dispersive optical fiber,” J. Lightw. Technol., vol. 10, no. 7, pp. 964–970, 1992.

1982 (2)

S. Kobayashi and T. Kimura, “Optical phase modulation in an injection locked AlGaAs semiconductor laser,” IEEE Trans. Microw. Theory Techn., vol. 30, no. 10, pp. 1650–1657, 1982.

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron., vol. 18, no. 6, pp. 976–983, 1982.

Alic, N.

B. P. P. Kuo, E. Myslivets, V. Ataie, E. G. Temprana, N. Alic, and S. Radic, “Wideband parametric frequency comb as coherent optical carrier,” J. Lightw. Technol., vol. 31, no. 21, pp. 3414–3419, 2013.

Ataie, V.

B. P. P. Kuo, E. Myslivets, V. Ataie, E. G. Temprana, N. Alic, and S. Radic, “Wideband parametric frequency comb as coherent optical carrier,” J. Lightw. Technol., vol. 31, no. 21, pp. 3414–3419, 2013.

Birk, M.

M. Birket al., “First 400GBASE-LR8 interoperability using CFP8 modules,” in Proc. Opt. Fiber Commun. Conf, 2017, Paper Th5B.7.

Buchali, F.

H. Bülow, F. Buchali, and A. Klekamp, “Electronic dispersion compensation,” J. Lightw. Technol., vol. 26, no. 1, pp. 158–167, 2008.

F. Buchaliet al., “Implementation of 64QAM at 42.66 GBaud using 1.5 samples per symbol DAC and demonstration of up to 300 km fiber transmission,” in Proc. Opt. Fiber Commun. Conf., 2014, Paper M2A.1.

Bülow, H.

H. Bülow, F. Buchali, and A. Klekamp, “Electronic dispersion compensation,” J. Lightw. Technol., vol. 26, no. 1, pp. 158–167, 2008.

Chang-Hasnain, C.

Chen, X.

X. Chenet al., “218-Gb/s single-wavelength, single-polarization, single photodiode transmission over 125-km of standard singlemode fiber using Kramers-Kronig detection” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th5B.6.

Eiselt, N.

N. Eiseltet al., “First real-time 400G PAM-4 demonstration for inter-data center transmission over 100 km of SSMF at 1550 nm,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper W1K.5.

Farwell, S.

Z. Liu, S. Farwell, M. Wale, D. J. Richardson, and R. Slavík, “InP-based optical comb-locked tunable transmitter,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Tu2K.2.

Gavrielides, A.

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 7, no. 7, pp. 709–711, 1995.

Griffin, R. A.

R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach-Zehnder modulator platform for 10/40/100/200-Gb/s operation,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 6, 2013, Art. no. .

Hakki, B. W.

B. W. Hakki, “Evaluation of transmission characteristics of chirped DFB lasers in dispersive optical fiber,” J. Lightw. Technol., vol. 10, no. 7, pp. 964–970, 1992.

Heck, S. C.

R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach-Zehnder modulator platform for 10/40/100/200-Gb/s operation,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 6, 2013, Art. no. .

Jones, S. K.

R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach-Zehnder modulator platform for 10/40/100/200-Gb/s operation,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 6, 2013, Art. no. .

Kakande, J.

R. Slavik, J. Kakande, R. Phelan, J. O'Carroll, B. Kelly, and D. J. Richardson, “QAM synthesis by direct modulation of semiconductor lasers under injection locking,” in Proc. Opt. Fiber Commun. Conf., 2013, Paper JTh2A.32.

Kamei, A.

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photon. Technol. Lett., vol. 12, no. 10, pp. 1298–1300, 2000.

Karinou, F.

F. Karinou, N. Stojanovic, and Z. Yu, “Toward cost-efficient 100G metro networks using IM/DD, 10-GHz components, and MLSE receiver,” J. Lightw. Technol., vol. 33, no. 19, pp. 4109–4117, 2015.

Kelly, B.

Z. Liu, B. Kelly, J. Ocarroll, R. Phelan, D. J. Richardson, and R. Slavik, “Discrete multitone format for repeater-less direct-modulation direct-detection over 150 km,” J. Lightw. Technol., vol. 34, no. 13, pp. 3223–3229, 2016.

R. Slavik, J. Kakande, R. Phelan, J. O'Carroll, B. Kelly, and D. J. Richardson, “QAM synthesis by direct modulation of semiconductor lasers under injection locking,” in Proc. Opt. Fiber Commun. Conf., 2013, Paper JTh2A.32.

Kimura, T.

S. Kobayashi and T. Kimura, “Optical phase modulation in an injection locked AlGaAs semiconductor laser,” IEEE Trans. Microw. Theory Techn., vol. 30, no. 10, pp. 1650–1657, 1982.

Klekamp, A.

H. Bülow, F. Buchali, and A. Klekamp, “Electronic dispersion compensation,” J. Lightw. Technol., vol. 26, no. 1, pp. 158–167, 2008.

Kobayashi, S.

S. Kobayashi and T. Kimura, “Optical phase modulation in an injection locked AlGaAs semiconductor laser,” IEEE Trans. Microw. Theory Techn., vol. 30, no. 10, pp. 1650–1657, 1982.

Kuo, B. P. P.

B. P. P. Kuo, E. Myslivets, V. Ataie, E. G. Temprana, N. Alic, and S. Radic, “Wideband parametric frequency comb as coherent optical carrier,” J. Lightw. Technol., vol. 31, no. 21, pp. 3414–3419, 2013.

Lang, R.

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron., vol. 18, no. 6, pp. 976–983, 1982.

Langley, L. N.

R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach-Zehnder modulator platform for 10/40/100/200-Gb/s operation,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 6, 2013, Art. no. .

Lau, E.

Lau, E. K.

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Topics Quantum Electron., vol. 15, no. 3, pp. 618–633, 2009.

Le, S.

S. Leet al., “8 × 256 Gbps virtual-carrier assisted WDM direct-detection transmission over a single span of 200 km,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.PDP.B.1.

Li, Z.

Z. Liet al., “SSBI mitigation and the Kramers-Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightw. Technol., vol. 35, no. 10, pp. 1887–1893, 2017.

Liu, J. M.

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 7, no. 7, pp. 709–711, 1995.

Liu, Z.

Z. Liu, B. Kelly, J. Ocarroll, R. Phelan, D. J. Richardson, and R. Slavik, “Discrete multitone format for repeater-less direct-modulation direct-detection over 150 km,” J. Lightw. Technol., vol. 34, no. 13, pp. 3223–3229, 2016.

Z. Liuet al., “Modulator-free quadrature amplitude modulation signal synthesis,” Nature Commun., vol. 5, 2014, Art. no. .

Z. Liuet al., “300-km transmission of dispersion pre-compensated PAM4 using direct modulation and direct detection,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th3D.6.

Z. Liu, S. Farwell, M. Wale, D. J. Richardson, and R. Slavík, “InP-based optical comb-locked tunable transmitter,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Tu2K.2.

Mahgerefteh, D.

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1126–1139, 2010.

Matsui, Y.

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1126–1139, 2010.

Y. Matsuiet al., “55-GHz bandwidth short-cavity distributed reflector laser and its application to 112-Gb/s PAM-4,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Th5B.4.

McCallion, K.

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1126–1139, 2010.

Myslivets, E.

B. P. P. Kuo, E. Myslivets, V. Ataie, E. G. Temprana, N. Alic, and S. Radic, “Wideband parametric frequency comb as coherent optical carrier,” J. Lightw. Technol., vol. 31, no. 21, pp. 3414–3419, 2013.

Nishi, K.

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photon. Technol. Lett., vol. 12, no. 10, pp. 1298–1300, 2000.

Ocarroll, J.

Z. Liu, B. Kelly, J. Ocarroll, R. Phelan, D. J. Richardson, and R. Slavik, “Discrete multitone format for repeater-less direct-modulation direct-detection over 150 km,” J. Lightw. Technol., vol. 34, no. 13, pp. 3223–3229, 2016.

O'Carroll, J.

R. Slavik, J. Kakande, R. Phelan, J. O'Carroll, B. Kelly, and D. J. Richardson, “QAM synthesis by direct modulation of semiconductor lasers under injection locking,” in Proc. Opt. Fiber Commun. Conf., 2013, Paper JTh2A.32.

Parekh, D.

Phelan, R.

Z. Liu, B. Kelly, J. Ocarroll, R. Phelan, D. J. Richardson, and R. Slavik, “Discrete multitone format for repeater-less direct-modulation direct-detection over 150 km,” J. Lightw. Technol., vol. 34, no. 13, pp. 3223–3229, 2016.

R. Slavik, J. Kakande, R. Phelan, J. O'Carroll, B. Kelly, and D. J. Richardson, “QAM synthesis by direct modulation of semiconductor lasers under injection locking,” in Proc. Opt. Fiber Commun. Conf., 2013, Paper JTh2A.32.

Radic, S.

B. P. P. Kuo, E. Myslivets, V. Ataie, E. G. Temprana, N. Alic, and S. Radic, “Wideband parametric frequency comb as coherent optical carrier,” J. Lightw. Technol., vol. 31, no. 21, pp. 3414–3419, 2013.

Rath, Roi

Roi Rathet al., “Tomlinson–Harashima precoding for dispersion uncompensated PAM-4 transmission with direct-detection,” J. Lightw. Technol., vol. 35, no. 18, pp. 3909–3917, 2017.

Richardson, D. J.

Z. Liu, B. Kelly, J. Ocarroll, R. Phelan, D. J. Richardson, and R. Slavik, “Discrete multitone format for repeater-less direct-modulation direct-detection over 150 km,” J. Lightw. Technol., vol. 34, no. 13, pp. 3223–3229, 2016.

R. Slavik, J. Kakande, R. Phelan, J. O'Carroll, B. Kelly, and D. J. Richardson, “QAM synthesis by direct modulation of semiconductor lasers under injection locking,” in Proc. Opt. Fiber Commun. Conf., 2013, Paper JTh2A.32.

Z. Liu, S. Farwell, M. Wale, D. J. Richardson, and R. Slavík, “InP-based optical comb-locked tunable transmitter,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Tu2K.2.

Saito, H.

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photon. Technol. Lett., vol. 12, no. 10, pp. 1298–1300, 2000.

Savory, S. J.

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1164–1179, 2010.

Simpson, T. B.

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 7, no. 7, pp. 709–711, 1995.

Slavik, R.

Z. Liu, B. Kelly, J. Ocarroll, R. Phelan, D. J. Richardson, and R. Slavik, “Discrete multitone format for repeater-less direct-modulation direct-detection over 150 km,” J. Lightw. Technol., vol. 34, no. 13, pp. 3223–3229, 2016.

R. Slavik, J. Kakande, R. Phelan, J. O'Carroll, B. Kelly, and D. J. Richardson, “QAM synthesis by direct modulation of semiconductor lasers under injection locking,” in Proc. Opt. Fiber Commun. Conf., 2013, Paper JTh2A.32.

Slavík, R.

Z. Liu, S. Farwell, M. Wale, D. J. Richardson, and R. Slavík, “InP-based optical comb-locked tunable transmitter,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Tu2K.2.

Stojanovic, N.

F. Karinou, N. Stojanovic, and Z. Yu, “Toward cost-efficient 100G metro networks using IM/DD, 10-GHz components, and MLSE receiver,” J. Lightw. Technol., vol. 33, no. 19, pp. 4109–4117, 2015.

Sugou, S.

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photon. Technol. Lett., vol. 12, no. 10, pp. 1298–1300, 2000.

Sung, H.

Temprana, E. G.

B. P. P. Kuo, E. Myslivets, V. Ataie, E. G. Temprana, N. Alic, and S. Radic, “Wideband parametric frequency comb as coherent optical carrier,” J. Lightw. Technol., vol. 31, no. 21, pp. 3414–3419, 2013.

Wale, M.

Z. Liu, S. Farwell, M. Wale, D. J. Richardson, and R. Slavík, “InP-based optical comb-locked tunable transmitter,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Tu2K.2.

Whitbread, N.

R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach-Zehnder modulator platform for 10/40/100/200-Gb/s operation,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 6, 2013, Art. no. .

Wong, L. J.

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Topics Quantum Electron., vol. 15, no. 3, pp. 618–633, 2009.

Wu, M.

Wu, M. C.

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Topics Quantum Electron., vol. 15, no. 3, pp. 618–633, 2009.

Yabre, G.

G. Yabre, “Effect of relatively strong light injection on the chirp-to-power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers,” J. Lightw. Technol., vol. 14, no. 10, pp. 2367–2373, 1996.

Yu, Z.

F. Karinou, N. Stojanovic, and Z. Yu, “Toward cost-efficient 100G metro networks using IM/DD, 10-GHz components, and MLSE receiver,” J. Lightw. Technol., vol. 33, no. 19, pp. 4109–4117, 2015.

Zhao, X.

Zheng, X.

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1126–1139, 2010.

Zhou, S.

IEEE J. Quantum Electron. (1)

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron., vol. 18, no. 6, pp. 976–983, 1982.

IEEE J. Sel. Topics Quantum Electron. (4)

E. K. Lau, L. J. Wong, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Topics Quantum Electron., vol. 15, no. 3, pp. 618–633, 2009.

D. Mahgerefteh, Y. Matsui, X. Zheng, and K. McCallion, “Chirp managed laser and applications,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1126–1139, 2010.

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1164–1179, 2010.

R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach-Zehnder modulator platform for 10/40/100/200-Gb/s operation,” IEEE J. Sel. Topics Quantum Electron., vol. 19, no. 6, 2013, Art. no. .

IEEE Photon. Technol. Lett. (2)

H. Saito, K. Nishi, A. Kamei, and S. Sugou, “Low chirp observed in directly modulated quantum dot lasers,” IEEE Photon. Technol. Lett., vol. 12, no. 10, pp. 1298–1300, 2000.

T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 7, no. 7, pp. 709–711, 1995.

IEEE Trans. Microw. Theory Techn. (1)

S. Kobayashi and T. Kimura, “Optical phase modulation in an injection locked AlGaAs semiconductor laser,” IEEE Trans. Microw. Theory Techn., vol. 30, no. 10, pp. 1650–1657, 1982.

J. Lightw. Technol. (8)

H. Bülow, F. Buchali, and A. Klekamp, “Electronic dispersion compensation,” J. Lightw. Technol., vol. 26, no. 1, pp. 158–167, 2008.

B. P. P. Kuo, E. Myslivets, V. Ataie, E. G. Temprana, N. Alic, and S. Radic, “Wideband parametric frequency comb as coherent optical carrier,” J. Lightw. Technol., vol. 31, no. 21, pp. 3414–3419, 2013.

Z. Liu, B. Kelly, J. Ocarroll, R. Phelan, D. J. Richardson, and R. Slavik, “Discrete multitone format for repeater-less direct-modulation direct-detection over 150 km,” J. Lightw. Technol., vol. 34, no. 13, pp. 3223–3229, 2016.

B. W. Hakki, “Evaluation of transmission characteristics of chirped DFB lasers in dispersive optical fiber,” J. Lightw. Technol., vol. 10, no. 7, pp. 964–970, 1992.

G. Yabre, “Effect of relatively strong light injection on the chirp-to-power ratio and the 3 dB bandwidth of directly modulated semiconductor lasers,” J. Lightw. Technol., vol. 14, no. 10, pp. 2367–2373, 1996.

Roi Rathet al., “Tomlinson–Harashima precoding for dispersion uncompensated PAM-4 transmission with direct-detection,” J. Lightw. Technol., vol. 35, no. 18, pp. 3909–3917, 2017.

F. Karinou, N. Stojanovic, and Z. Yu, “Toward cost-efficient 100G metro networks using IM/DD, 10-GHz components, and MLSE receiver,” J. Lightw. Technol., vol. 33, no. 19, pp. 4109–4117, 2015.

Z. Liet al., “SSBI mitigation and the Kramers-Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation,” J. Lightw. Technol., vol. 35, no. 10, pp. 1887–1893, 2017.

Nature Commun. (1)

Z. Liuet al., “Modulator-free quadrature amplitude modulation signal synthesis,” Nature Commun., vol. 5, 2014, Art. no. .

Opt. Express (1)

Opt. Lett. (1)

Other (9)

R. Slavik, J. Kakande, R. Phelan, J. O'Carroll, B. Kelly, and D. J. Richardson, “QAM synthesis by direct modulation of semiconductor lasers under injection locking,” in Proc. Opt. Fiber Commun. Conf., 2013, Paper JTh2A.32.

F. Buchaliet al., “Implementation of 64QAM at 42.66 GBaud using 1.5 samples per symbol DAC and demonstration of up to 300 km fiber transmission,” in Proc. Opt. Fiber Commun. Conf., 2014, Paper M2A.1.

Z. Liuet al., “300-km transmission of dispersion pre-compensated PAM4 using direct modulation and direct detection,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th3D.6.

Y. Matsuiet al., “55-GHz bandwidth short-cavity distributed reflector laser and its application to 112-Gb/s PAM-4,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Th5B.4.

M. Birket al., “First 400GBASE-LR8 interoperability using CFP8 modules,” in Proc. Opt. Fiber Commun. Conf, 2017, Paper Th5B.7.

N. Eiseltet al., “First real-time 400G PAM-4 demonstration for inter-data center transmission over 100 km of SSMF at 1550 nm,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper W1K.5.

X. Chenet al., “218-Gb/s single-wavelength, single-polarization, single photodiode transmission over 125-km of standard singlemode fiber using Kramers-Kronig detection” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th5B.6.

S. Leet al., “8 × 256 Gbps virtual-carrier assisted WDM direct-detection transmission over a single span of 200 km,” in Proc. Eur. Conf. Opt. Commun., 2017, Paper Th.PDP.B.1.

Z. Liu, S. Farwell, M. Wale, D. J. Richardson, and R. Slavík, “InP-based optical comb-locked tunable transmitter,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Tu2K.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.