Abstract

We first demonstrate delta-sigma digitization and coherent transmission of data over cable system interface specification (DOCSIS) 3.1 signals in a hybrid fiber coax (HFC) network. Twenty 192-MHz DOCSIS 3.1 channels with modulation up to 16384QAM are digitized by a low-pass cascade resonator feedback (CRFB) delta-sigma analog-to-digital converter (ADC) and transmitted over 80-km fiber using coherent single-λ 128-Gb/s dual-polarization (DP) quadrature phase-shift keying (QPSK) and 256-Gb/s DP-16QAM optical links. Both one-bit and two-bit delta-sigma digitization are implemented and supported by the QPSK and 16QAM coherent transmission systems, respectively. To facilitate its practical application in access networks, the coherent system is built using a low-cost narrow-band optical modulator and RF amplifiers. Modulation error ratio (MER) larger than 50 dB is successfully demonstrated for all 20 DOCSIS 3.1 channels, and high-order modulation up to 16384QAM is delivered over fiber for the first time in HFC networks. The raw DOCSIS data capacity is 54 Gb/s with net user information ∼45 Gb/s. Moreover, the bit error ratio (BER) tolerance is evaluated by measuring the MER performance as BER increases. Negligible MER degradation is observed for BER up to 1.5 × 10−6 and 1.7 × 10−4 for one-bit and two-bit digitization, respectively.

© 2017 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): Building a next-generation optical access network,” IEEE Commun. Mag., vol. 40, no. 2, pp. 66–73,  2002.
  2. S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightw. Technol., vol. 22, no. 11, pp. 2582–2591,  2004.
  3. Y. Luoet al., “Time- and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON stage 2 (NG-PON2),” J. Lightw. Technol., vol. 31, no. 4, pp. 587–593,  2013.
  4. China Mobile, “C-RAN the road towards green RAN (version 2.5),” White Paper,  2011.
  5. A. Checkoet al., “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surveys Tuts., vol. 17, no. 1, pp. 405–426,  2015.
  6. T. Pfeiffer, “Next generation mobile fronthaul and midhaul architectures,” IEEE/OSA J. Opt. Commun. Netw., vol. 7, no. 11, pp. B38–B45,  2015.
  7. A. Pizzinat, P. Chanclou, F. Saliou, and T. Diallo, “Things you should know about fronthaul,” J. Lightw. Technol., vol. 33, no. 5, pp. 1077–1083,  2015.
  8. M. Toy, Cable Networks, Services, and Management, IEEE Press Series on Networks and Services Management. New York, NY, USA: Wiley, 2015, ch. 1.
  9. Ovum report, “HFC: Delivering Gigabit Broadband,” 2016. [Online]. Available: http://www.nbnco.com.au/content/dam/nbnco2/documents/HFC%20Delivering%20Gigabit%20Broadband%20Ovum%20Report.pdf
  10. B. Hamzeh, M. Toy, Y. Fu, and J. Martin, “DOCSIS 3.1: Scaling broadband cable to Gigabit speeds,” IEEE Commun. Mag., vol. 53, no. 3, pp. 108–113,  2015.
  11. M. Toy, J. Martin, M. Schmitt, and V. Blake, “Next generation cable networks with DOCSIS 3.1 technology,” IEEE Commun. Mag., vol. 53, no. 3, pp. 106–107,  2015.
  12. H. Mehmood, S. Rahman, and J. M. Cioffi, “Bit loading profiles for high-speed data in DOCSIS 3.1,” IEEE Commun. Mag., vol. 53, no. 3, pp. 114–120,  2015.
  13. D. Rice, “DOCSIS 3.1 technology and hybrid fiber coax for multi-Gbps broadband,” in Proc. Opt. Fiber Commun. Conf., 2015, Paper Th4B.1.
  14. H. Salib, “FTTU: MSO perspective,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Th1I.1.
  15. Data-Over-Cable Service Interface Specifications, DOCSIS 3.1, Physical Layer Specification, CM-SP-PHYv3.1-I09-160602, Cable Television Laboratories, Inc., Louisville, CO, USA,  2016.
  16. DOCSIS 3.1 Physical & MAC Layer Quick Reference Pocket Guide,” Cable Television Laboratories, Inc., Louisville, CO, USA,  2014.
  17. K. Sundaresan, DOCSIS 3.1 High Level Overview at NANOG 59, Cable Television Laboratories, Inc., Louisville, CO, USA, 2013. [Online]. Available: https://www.nanog.org/sites/default/files/wed.general.sundaresan.docsis.35.pdf
  18. A. Al-Banna and T. Cloonan, “The spectral efficiency of DOCSIS 3.1 systems,” Arris white paper, 2014. [Online]. Available: https://www.arris.com/globalassets/resources/white-papers/arris_spectral_efficiency_of_docsis_wp.pdf
  19. H. Ibl and C. Klaus, “DOCSIS 3.1 application note,” Rohde Schwarz white paper, 7MH89_0E, 2015. [Online]. Available: http://www.rohde-schwarz-usa.com/rs/rohdeschwarz/images/7mh89_oe-docsis3.1.pdf
  20. Evolved Universal Terrestrial Radio Access (E-UTRA); Carrier Aggregation; Base Station (BS) Radio Transmission and Reception, Release 10, 3GPP TR 36.808, V10.1.0,  2013.
  21. New WI Proposal: LTE Carrier Aggregation Enhancement Beyond 5 Carriers, 3GPP RP-142286,  2014.
  22. J. Wang, C. Liu, M. Zhu, A. Yi, L. Cheng, and G. K. Chang, “Investigation of data-dependent channel cross-modulation in multiband radio-over-fiber systems,” J. Lightw. Technol., vol. 32, no. 10, pp. 1861–1871,  2014.
  23. J. Wang, C. Liu, M. Zhu, M. Xu, Z. Dong, and G.-K. Chang, “Characterization and mitigation of nonlinear intermodulations in multichannel OFDM radio-over-fiber systems,” in Proc. Eur. Conf. Opt. Commun., 2014, Paper P.7.18.
  24. J. Wanget al., “Nonlinear inter-band subcarrier intermodulations for multi-RAT OFDM wireless services in 5G heterogeneous mobile fronthaul networks,” J. Lightw. Technol., vol. 34, no. 17, pp. 4089–4103,  2016.
  25. Common Public Radio Interface (CPRI), Specification V7.0 (2015-10-09). 2015. [Online]. Available: http://www.cpri.info/downloads/CPRI_v_7_0_2015-10-09.pdf
  26. R. Gray, “Oversampled sigma-delta modulation,” IEEE Trans. Commun., vol. COM-35, no. 5, pp. 481–489,  1987.
  27. P. M. Aziz, H. V. Sorensen, and J. V. der Spiegel, “An overview of sigma-delta converters,” IEEE Signal Process. Mag., vol. 13, no. 1, pp. 61–84,  1996.
  28. R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. New York, NY, USA: Wiley,  2004.
  29. R. Schreier, Delta Sigma Toolbox: high-level design and simulation of delta-sigma modulators. 2016. [Online]. Available: http://www.mathworks.com/matlabcentral/fileexchange/19-delta-sigma-toolbox
  30. T. P. Hung, J. Rode, L. E. Larson, and P. M. Asbeck, “Design of H-bridge class-D power amplifiers for digital pulse modulation transmitters,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, pp. 2845–2855,  2007.
  31. M. Nielsen and T. Larsen, “A transmitter architecture based on delta-sigma modulation and switch-mode power amplification,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 54, no. 8, pp. 735–739,  2007.
  32. F. M. Ghannouchi, S. Hatami, P. Aflaki, M. Helaoui, and R. Negra, “Accurate power efficiency estimation of GHz wireless delta-sigma transmitters for different classes of switching mode power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 2812–2819,  2010.
  33. A. Jerng and C. G. Sodini, “A wideband ΔΣ digital-RF modulator for high data rate transmitters,” IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1710–1722,  2007.
  34. A. Frappe, A. Flament, B. Stefanelli, A. Kaiser, and A. Cathelin, “An all-digital RF signal generator using high-speed ΔΣ modulators,” IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2722–2732,  2009.
  35. A. Pozsgay, T. Zounes, R. Hossain, M. Boulemnakher, V. Knopik, and S. Grange, “A fully digital 65nm CMOS transmitter for the 2.4-to-2.7GHz WiFi/WiMAX bands using 5.4 GHz ΔΣ RF DACs,” in Proc. IEEE Int. Solid-State Circuits Conf., 2008, pp. 360–361.
  36. N. V. Silva, A. S. R. Oliveira, and N. B. Carvalho, “Design and optimization of flexible and coding efficient all-digital RF transmitters,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 625–632,  2013.
  37. S. Chung, R. Ma, S. Shinjo, H. Nakamizo, K. Parsons, and K. H. Teo, “Concurrent multiband digital outphasing transmitter architecture using multidimensional power coding,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 598–613,  2015.
  38. J. A. Wepman, “Analog-to-digital converters and their applications in radio receivers,” IEEE Commun. Mag., vol. 33, no. 5, pp. 39–45,  1995.
  39. M. R. Miller and C. S. Petrie, “A multibit sigma-delta ADC for multimode receivers,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 475–482,  2003.
  40. J. Ariaset al., “A 32-mW 320-MHz continuous-time complex delta-sigma ADC for multi-mode wireless-LAN receivers,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 339–351,  2006.
  41. C. Wu, E. Alon, and B. Nikolić, “A wideband 400 MHz-to-4 GHz direct RF-to-digital multimode ΔΣ receiver,” IEEE J. Solid-State Circuits, vol. 49, no. 7, pp. 1639–1652,  2014.
  42. L. Bettini, T. Christen, T. Burger, and Q. Huang, “A reconfigurable DT ΔΣ modulator for multi-standard 2G/3G/4G wireless receivers,” IEEE J. Emer. Sel. Topics Circuits Syst., vol. 5, no. 4, pp. 525–536,  2015.
  43. K. Kitamura, S. Sasaki, Y. Matsuya, and T. Douseki, “Optical wireless digital-sound transmission system with 1-bit ΔΣ-modulated visible light and spherical Si solar cells,” IEEE Sens. J., vol. 10, no. 11, pp. 1753–1758,  2010.
  44. H. Qian, J. Chen, S. Yao, Z. Yu, H. Zhang, and W. Xu, “One-bit sigma-delta modulator for nonlinear visible light communication systems,” IEEE Photon. Technol. Lett., vol. 27, no. 4, pp. 419–422,  2015.
  45. A. Kanno and T. Kawanishi, “Analog signal transmission by FPGA-based pseudo-delta-sigma modulator,” in Proc. IEEE Photon. Conf., 2015, pp. 136–137.
  46. S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2484–2487,  2014.
  47. L. M. Pessoa, J. S. Tavares, D. Coelho, and H. M. Salgado, “Experimental evaluation of a digitized fiber-wireless system employing sigma delta modulation,” Opt. Express, vol. 22, no. 14, pp. 17508–17523, 2014.
  48. J. Wanget al., “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE/30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper W1H.2.
  49. J. Wanget al., “10-Gbaud OOK/PAM4 digital mobile fronthaul based on one-bit/two-bit delta-sigma modulation supporting carrier aggregation of 32 LTE-A signals,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper W.4.P1.SC7.1.
  50. J. Wanget al., “Digital mobile fronthaul based on delta-sigma modulation for 32 LTE carrier aggregation and FBMC signals,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 2, pp. A233–A244,  2017.
  51. J. Wang, Z. Jia, L. A. Campos, C. Knittle, and G. Chang, “Optical coherent transmission of 20x192-MHz DOCSIS 3.1 channels with 16384QAM based on delta-sigma digitization,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th1K.1.
  52. Data-Over-Cable Service Interface Specifications, DCA-MHAv2, Remote PHY Specification, CM-SP-R-PHY-I07-170524, Cable Television Laboratories, Inc., Louisville, CO, USA,  2017.
  53. J. D. Salinger, “Remote PHY: Why and how,” CableLabs, NCTA, SCTE, Spring Technical Forum, 2014.
  54. J. T. Chapman, “Remote PHY for converged DOCSIS, video and OOB,” CableLabs, NCTA, SCTE, Spring Technical Forum, 2014.
  55. J. T. Chapman, G. White, and H. Jin, “Impact of CCAP to CM distance in a remote PHY architecture,” CableLabs, NCTA, SCTE, Spring Technical Forum, 2015.
  56. J. D. Salinger, “Distributed architectures and converged access network,” CableLabs, NCTA, SCTE, Spring Technical Forum, 2016.
  57. C.-L. I, J. Huang, Y. Yuan, S. Ma, and R. Duan, “NGFI, the xHaul,” in Proc. IEEE Globecom Workshops, 2015, pp. 1–6.
  58. C.-L. I, Y. Yuan, J. Huang, S. Ma, C. Cui, and R. Duan, “Rethink fronthaul for soft RAN,” IEEE Commun. Mag., vol. 53, no. 9, pp. 82–88,  2015.
  59. C.-L. I and J. Huang, “RAN revolution with NGFI (xHaul) for 5G,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper W1C.7.
  60. S. S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ, USA: Prentice-Hall, 2001.
  61. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express, vol. 16, no. 2, pp. 804–817, 2008.
  62. S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1164–1179,  2010.
  63. D. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication systems,” IEEE Trans. Commun., vol. 28, no. 11, pp. 1867–1875,  1980.
  64. K. Kikuchi, “Polarization-demultiplexing algorithm in the digital coherent receiver,” in Proc. Dig. IEEE/LEOS Summer Topical Meetings, 2008, pp. 101–102.
  65. A. Leven, N. Kaneda, U. V. Koc, and Y. K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 366–368,  2007.
  66. S. Hoffmannet al., “Frequency and phase estimation for coherent QPSK transmission with unlocked DFB lasers,” IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1569–1571,  2008.
  67. A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory, vol. IT-29, no. 4, pp. 543–551,  1983.
  68. I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightw. Technol., vol. 27, no. 15, pp. 3042–3049,  2009.

2017 (1)

J. Wanget al., “Digital mobile fronthaul based on delta-sigma modulation for 32 LTE carrier aggregation and FBMC signals,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 2, pp. A233–A244,  2017.

2016 (2)

J. D. Salinger, “Distributed architectures and converged access network,” CableLabs, NCTA, SCTE, Spring Technical Forum, 2016.

J. Wanget al., “Nonlinear inter-band subcarrier intermodulations for multi-RAT OFDM wireless services in 5G heterogeneous mobile fronthaul networks,” J. Lightw. Technol., vol. 34, no. 17, pp. 4089–4103,  2016.

2015 (11)

A. Checkoet al., “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surveys Tuts., vol. 17, no. 1, pp. 405–426,  2015.

T. Pfeiffer, “Next generation mobile fronthaul and midhaul architectures,” IEEE/OSA J. Opt. Commun. Netw., vol. 7, no. 11, pp. B38–B45,  2015.

A. Pizzinat, P. Chanclou, F. Saliou, and T. Diallo, “Things you should know about fronthaul,” J. Lightw. Technol., vol. 33, no. 5, pp. 1077–1083,  2015.

B. Hamzeh, M. Toy, Y. Fu, and J. Martin, “DOCSIS 3.1: Scaling broadband cable to Gigabit speeds,” IEEE Commun. Mag., vol. 53, no. 3, pp. 108–113,  2015.

M. Toy, J. Martin, M. Schmitt, and V. Blake, “Next generation cable networks with DOCSIS 3.1 technology,” IEEE Commun. Mag., vol. 53, no. 3, pp. 106–107,  2015.

H. Mehmood, S. Rahman, and J. M. Cioffi, “Bit loading profiles for high-speed data in DOCSIS 3.1,” IEEE Commun. Mag., vol. 53, no. 3, pp. 114–120,  2015.

C.-L. I, Y. Yuan, J. Huang, S. Ma, C. Cui, and R. Duan, “Rethink fronthaul for soft RAN,” IEEE Commun. Mag., vol. 53, no. 9, pp. 82–88,  2015.

H. Qian, J. Chen, S. Yao, Z. Yu, H. Zhang, and W. Xu, “One-bit sigma-delta modulator for nonlinear visible light communication systems,” IEEE Photon. Technol. Lett., vol. 27, no. 4, pp. 419–422,  2015.

S. Chung, R. Ma, S. Shinjo, H. Nakamizo, K. Parsons, and K. H. Teo, “Concurrent multiband digital outphasing transmitter architecture using multidimensional power coding,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 598–613,  2015.

L. Bettini, T. Christen, T. Burger, and Q. Huang, “A reconfigurable DT ΔΣ modulator for multi-standard 2G/3G/4G wireless receivers,” IEEE J. Emer. Sel. Topics Circuits Syst., vol. 5, no. 4, pp. 525–536,  2015.

J. T. Chapman, G. White, and H. Jin, “Impact of CCAP to CM distance in a remote PHY architecture,” CableLabs, NCTA, SCTE, Spring Technical Forum, 2015.

2014 (6)

C. Wu, E. Alon, and B. Nikolić, “A wideband 400 MHz-to-4 GHz direct RF-to-digital multimode ΔΣ receiver,” IEEE J. Solid-State Circuits, vol. 49, no. 7, pp. 1639–1652,  2014.

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2484–2487,  2014.

L. M. Pessoa, J. S. Tavares, D. Coelho, and H. M. Salgado, “Experimental evaluation of a digitized fiber-wireless system employing sigma delta modulation,” Opt. Express, vol. 22, no. 14, pp. 17508–17523, 2014.

J. D. Salinger, “Remote PHY: Why and how,” CableLabs, NCTA, SCTE, Spring Technical Forum, 2014.

J. T. Chapman, “Remote PHY for converged DOCSIS, video and OOB,” CableLabs, NCTA, SCTE, Spring Technical Forum, 2014.

J. Wang, C. Liu, M. Zhu, A. Yi, L. Cheng, and G. K. Chang, “Investigation of data-dependent channel cross-modulation in multiband radio-over-fiber systems,” J. Lightw. Technol., vol. 32, no. 10, pp. 1861–1871,  2014.

2013 (2)

Y. Luoet al., “Time- and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON stage 2 (NG-PON2),” J. Lightw. Technol., vol. 31, no. 4, pp. 587–593,  2013.

N. V. Silva, A. S. R. Oliveira, and N. B. Carvalho, “Design and optimization of flexible and coding efficient all-digital RF transmitters,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 625–632,  2013.

2011 (1)

China Mobile, “C-RAN the road towards green RAN (version 2.5),” White Paper,  2011.

2010 (3)

F. M. Ghannouchi, S. Hatami, P. Aflaki, M. Helaoui, and R. Negra, “Accurate power efficiency estimation of GHz wireless delta-sigma transmitters for different classes of switching mode power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 2812–2819,  2010.

K. Kitamura, S. Sasaki, Y. Matsuya, and T. Douseki, “Optical wireless digital-sound transmission system with 1-bit ΔΣ-modulated visible light and spherical Si solar cells,” IEEE Sens. J., vol. 10, no. 11, pp. 1753–1758,  2010.

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1164–1179,  2010.

2009 (2)

A. Frappe, A. Flament, B. Stefanelli, A. Kaiser, and A. Cathelin, “An all-digital RF signal generator using high-speed ΔΣ modulators,” IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2722–2732,  2009.

I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightw. Technol., vol. 27, no. 15, pp. 3042–3049,  2009.

2008 (2)

S. Hoffmannet al., “Frequency and phase estimation for coherent QPSK transmission with unlocked DFB lasers,” IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1569–1571,  2008.

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express, vol. 16, no. 2, pp. 804–817, 2008.

2007 (4)

A. Jerng and C. G. Sodini, “A wideband ΔΣ digital-RF modulator for high data rate transmitters,” IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1710–1722,  2007.

T. P. Hung, J. Rode, L. E. Larson, and P. M. Asbeck, “Design of H-bridge class-D power amplifiers for digital pulse modulation transmitters,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, pp. 2845–2855,  2007.

M. Nielsen and T. Larsen, “A transmitter architecture based on delta-sigma modulation and switch-mode power amplification,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 54, no. 8, pp. 735–739,  2007.

A. Leven, N. Kaneda, U. V. Koc, and Y. K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 366–368,  2007.

2006 (1)

J. Ariaset al., “A 32-mW 320-MHz continuous-time complex delta-sigma ADC for multi-mode wireless-LAN receivers,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 339–351,  2006.

2004 (1)

S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightw. Technol., vol. 22, no. 11, pp. 2582–2591,  2004.

2003 (1)

M. R. Miller and C. S. Petrie, “A multibit sigma-delta ADC for multimode receivers,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 475–482,  2003.

2002 (1)

G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): Building a next-generation optical access network,” IEEE Commun. Mag., vol. 40, no. 2, pp. 66–73,  2002.

1996 (1)

P. M. Aziz, H. V. Sorensen, and J. V. der Spiegel, “An overview of sigma-delta converters,” IEEE Signal Process. Mag., vol. 13, no. 1, pp. 61–84,  1996.

1995 (1)

J. A. Wepman, “Analog-to-digital converters and their applications in radio receivers,” IEEE Commun. Mag., vol. 33, no. 5, pp. 39–45,  1995.

1987 (1)

R. Gray, “Oversampled sigma-delta modulation,” IEEE Trans. Commun., vol. COM-35, no. 5, pp. 481–489,  1987.

1983 (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory, vol. IT-29, no. 4, pp. 543–551,  1983.

1980 (1)

D. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication systems,” IEEE Trans. Commun., vol. 28, no. 11, pp. 1867–1875,  1980.

Aflaki, P.

F. M. Ghannouchi, S. Hatami, P. Aflaki, M. Helaoui, and R. Negra, “Accurate power efficiency estimation of GHz wireless delta-sigma transmitters for different classes of switching mode power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 2812–2819,  2010.

Ahn, J.-G.

S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightw. Technol., vol. 22, no. 11, pp. 2582–2591,  2004.

Al-Banna, A.

A. Al-Banna and T. Cloonan, “The spectral efficiency of DOCSIS 3.1 systems,” Arris white paper, 2014. [Online]. Available: https://www.arris.com/globalassets/resources/white-papers/arris_spectral_efficiency_of_docsis_wp.pdf

Alon, E.

C. Wu, E. Alon, and B. Nikolić, “A wideband 400 MHz-to-4 GHz direct RF-to-digital multimode ΔΣ receiver,” IEEE J. Solid-State Circuits, vol. 49, no. 7, pp. 1639–1652,  2014.

Arias, J.

J. Ariaset al., “A 32-mW 320-MHz continuous-time complex delta-sigma ADC for multi-mode wireless-LAN receivers,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 339–351,  2006.

Asbeck, P. M.

T. P. Hung, J. Rode, L. E. Larson, and P. M. Asbeck, “Design of H-bridge class-D power amplifiers for digital pulse modulation transmitters,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, pp. 2845–2855,  2007.

Aziz, P. M.

P. M. Aziz, H. V. Sorensen, and J. V. der Spiegel, “An overview of sigma-delta converters,” IEEE Signal Process. Mag., vol. 13, no. 1, pp. 61–84,  1996.

Bettini, L.

L. Bettini, T. Christen, T. Burger, and Q. Huang, “A reconfigurable DT ΔΣ modulator for multi-standard 2G/3G/4G wireless receivers,” IEEE J. Emer. Sel. Topics Circuits Syst., vol. 5, no. 4, pp. 525–536,  2015.

Blake, V.

M. Toy, J. Martin, M. Schmitt, and V. Blake, “Next generation cable networks with DOCSIS 3.1 technology,” IEEE Commun. Mag., vol. 53, no. 3, pp. 106–107,  2015.

Boulemnakher, M.

A. Pozsgay, T. Zounes, R. Hossain, M. Boulemnakher, V. Knopik, and S. Grange, “A fully digital 65nm CMOS transmitter for the 2.4-to-2.7GHz WiFi/WiMAX bands using 5.4 GHz ΔΣ RF DACs,” in Proc. IEEE Int. Solid-State Circuits Conf., 2008, pp. 360–361.

Burger, T.

L. Bettini, T. Christen, T. Burger, and Q. Huang, “A reconfigurable DT ΔΣ modulator for multi-standard 2G/3G/4G wireless receivers,” IEEE J. Emer. Sel. Topics Circuits Syst., vol. 5, no. 4, pp. 525–536,  2015.

Campos, L. A.

J. Wang, Z. Jia, L. A. Campos, C. Knittle, and G. Chang, “Optical coherent transmission of 20x192-MHz DOCSIS 3.1 channels with 16384QAM based on delta-sigma digitization,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th1K.1.

Carvalho, N. B.

N. V. Silva, A. S. R. Oliveira, and N. B. Carvalho, “Design and optimization of flexible and coding efficient all-digital RF transmitters,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 625–632,  2013.

Cathelin, A.

A. Frappe, A. Flament, B. Stefanelli, A. Kaiser, and A. Cathelin, “An all-digital RF signal generator using high-speed ΔΣ modulators,” IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2722–2732,  2009.

Chanclou, P.

A. Pizzinat, P. Chanclou, F. Saliou, and T. Diallo, “Things you should know about fronthaul,” J. Lightw. Technol., vol. 33, no. 5, pp. 1077–1083,  2015.

Chang, G.

J. Wang, Z. Jia, L. A. Campos, C. Knittle, and G. Chang, “Optical coherent transmission of 20x192-MHz DOCSIS 3.1 channels with 16384QAM based on delta-sigma digitization,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th1K.1.

Chang, G. K.

J. Wang, C. Liu, M. Zhu, A. Yi, L. Cheng, and G. K. Chang, “Investigation of data-dependent channel cross-modulation in multiband radio-over-fiber systems,” J. Lightw. Technol., vol. 32, no. 10, pp. 1861–1871,  2014.

Chang, G.-K.

J. Wang, C. Liu, M. Zhu, M. Xu, Z. Dong, and G.-K. Chang, “Characterization and mitigation of nonlinear intermodulations in multichannel OFDM radio-over-fiber systems,” in Proc. Eur. Conf. Opt. Commun., 2014, Paper P.7.18.

Chapman, J. T.

J. T. Chapman, G. White, and H. Jin, “Impact of CCAP to CM distance in a remote PHY architecture,” CableLabs, NCTA, SCTE, Spring Technical Forum, 2015.

J. T. Chapman, “Remote PHY for converged DOCSIS, video and OOB,” CableLabs, NCTA, SCTE, Spring Technical Forum, 2014.

Checko, A.

A. Checkoet al., “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surveys Tuts., vol. 17, no. 1, pp. 405–426,  2015.

Chen, J.

H. Qian, J. Chen, S. Yao, Z. Yu, H. Zhang, and W. Xu, “One-bit sigma-delta modulator for nonlinear visible light communication systems,” IEEE Photon. Technol. Lett., vol. 27, no. 4, pp. 419–422,  2015.

Chen, Y. K.

A. Leven, N. Kaneda, U. V. Koc, and Y. K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 366–368,  2007.

Cheng, L.

J. Wang, C. Liu, M. Zhu, A. Yi, L. Cheng, and G. K. Chang, “Investigation of data-dependent channel cross-modulation in multiband radio-over-fiber systems,” J. Lightw. Technol., vol. 32, no. 10, pp. 1861–1871,  2014.

Christen, T.

L. Bettini, T. Christen, T. Burger, and Q. Huang, “A reconfigurable DT ΔΣ modulator for multi-standard 2G/3G/4G wireless receivers,” IEEE J. Emer. Sel. Topics Circuits Syst., vol. 5, no. 4, pp. 525–536,  2015.

Chung, S.

S. Chung, R. Ma, S. Shinjo, H. Nakamizo, K. Parsons, and K. H. Teo, “Concurrent multiband digital outphasing transmitter architecture using multidimensional power coding,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 598–613,  2015.

Cioffi, J. M.

H. Mehmood, S. Rahman, and J. M. Cioffi, “Bit loading profiles for high-speed data in DOCSIS 3.1,” IEEE Commun. Mag., vol. 53, no. 3, pp. 114–120,  2015.

Cloonan, T.

A. Al-Banna and T. Cloonan, “The spectral efficiency of DOCSIS 3.1 systems,” Arris white paper, 2014. [Online]. Available: https://www.arris.com/globalassets/resources/white-papers/arris_spectral_efficiency_of_docsis_wp.pdf

Coelho, D.

Cui, C.

C.-L. I, Y. Yuan, J. Huang, S. Ma, C. Cui, and R. Duan, “Rethink fronthaul for soft RAN,” IEEE Commun. Mag., vol. 53, no. 9, pp. 82–88,  2015.

der Spiegel, J. V.

P. M. Aziz, H. V. Sorensen, and J. V. der Spiegel, “An overview of sigma-delta converters,” IEEE Signal Process. Mag., vol. 13, no. 1, pp. 61–84,  1996.

Diallo, T.

A. Pizzinat, P. Chanclou, F. Saliou, and T. Diallo, “Things you should know about fronthaul,” J. Lightw. Technol., vol. 33, no. 5, pp. 1077–1083,  2015.

Dong, Z.

J. Wang, C. Liu, M. Zhu, M. Xu, Z. Dong, and G.-K. Chang, “Characterization and mitigation of nonlinear intermodulations in multichannel OFDM radio-over-fiber systems,” in Proc. Eur. Conf. Opt. Commun., 2014, Paper P.7.18.

Douseki, T.

K. Kitamura, S. Sasaki, Y. Matsuya, and T. Douseki, “Optical wireless digital-sound transmission system with 1-bit ΔΣ-modulated visible light and spherical Si solar cells,” IEEE Sens. J., vol. 10, no. 11, pp. 1753–1758,  2010.

Duan, R.

C.-L. I, Y. Yuan, J. Huang, S. Ma, C. Cui, and R. Duan, “Rethink fronthaul for soft RAN,” IEEE Commun. Mag., vol. 53, no. 9, pp. 82–88,  2015.

C.-L. I, J. Huang, Y. Yuan, S. Ma, and R. Duan, “NGFI, the xHaul,” in Proc. IEEE Globecom Workshops, 2015, pp. 1–6.

Fatadin, I.

I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightw. Technol., vol. 27, no. 15, pp. 3042–3049,  2009.

Flament, A.

A. Frappe, A. Flament, B. Stefanelli, A. Kaiser, and A. Cathelin, “An all-digital RF signal generator using high-speed ΔΣ modulators,” IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2722–2732,  2009.

Frappe, A.

A. Frappe, A. Flament, B. Stefanelli, A. Kaiser, and A. Cathelin, “An all-digital RF signal generator using high-speed ΔΣ modulators,” IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2722–2732,  2009.

Fu, Y.

B. Hamzeh, M. Toy, Y. Fu, and J. Martin, “DOCSIS 3.1: Scaling broadband cable to Gigabit speeds,” IEEE Commun. Mag., vol. 53, no. 3, pp. 108–113,  2015.

Ghannouchi, F. M.

F. M. Ghannouchi, S. Hatami, P. Aflaki, M. Helaoui, and R. Negra, “Accurate power efficiency estimation of GHz wireless delta-sigma transmitters for different classes of switching mode power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 2812–2819,  2010.

Godard, D.

D. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication systems,” IEEE Trans. Commun., vol. 28, no. 11, pp. 1867–1875,  1980.

Grange, S.

A. Pozsgay, T. Zounes, R. Hossain, M. Boulemnakher, V. Knopik, and S. Grange, “A fully digital 65nm CMOS transmitter for the 2.4-to-2.7GHz WiFi/WiMAX bands using 5.4 GHz ΔΣ RF DACs,” in Proc. IEEE Int. Solid-State Circuits Conf., 2008, pp. 360–361.

Gray, R.

R. Gray, “Oversampled sigma-delta modulation,” IEEE Trans. Commun., vol. COM-35, no. 5, pp. 481–489,  1987.

Hamzeh, B.

B. Hamzeh, M. Toy, Y. Fu, and J. Martin, “DOCSIS 3.1: Scaling broadband cable to Gigabit speeds,” IEEE Commun. Mag., vol. 53, no. 3, pp. 108–113,  2015.

Hatami, S.

F. M. Ghannouchi, S. Hatami, P. Aflaki, M. Helaoui, and R. Negra, “Accurate power efficiency estimation of GHz wireless delta-sigma transmitters for different classes of switching mode power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 2812–2819,  2010.

Haykin, S. S.

S. S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ, USA: Prentice-Hall, 2001.

Helaoui, M.

F. M. Ghannouchi, S. Hatami, P. Aflaki, M. Helaoui, and R. Negra, “Accurate power efficiency estimation of GHz wireless delta-sigma transmitters for different classes of switching mode power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 2812–2819,  2010.

Hoffmann, S.

S. Hoffmannet al., “Frequency and phase estimation for coherent QPSK transmission with unlocked DFB lasers,” IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1569–1571,  2008.

Hong, S.

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2484–2487,  2014.

Hossain, R.

A. Pozsgay, T. Zounes, R. Hossain, M. Boulemnakher, V. Knopik, and S. Grange, “A fully digital 65nm CMOS transmitter for the 2.4-to-2.7GHz WiFi/WiMAX bands using 5.4 GHz ΔΣ RF DACs,” in Proc. IEEE Int. Solid-State Circuits Conf., 2008, pp. 360–361.

Huang, J.

C.-L. I, Y. Yuan, J. Huang, S. Ma, C. Cui, and R. Duan, “Rethink fronthaul for soft RAN,” IEEE Commun. Mag., vol. 53, no. 9, pp. 82–88,  2015.

C.-L. I and J. Huang, “RAN revolution with NGFI (xHaul) for 5G,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper W1C.7.

C.-L. I, J. Huang, Y. Yuan, S. Ma, and R. Duan, “NGFI, the xHaul,” in Proc. IEEE Globecom Workshops, 2015, pp. 1–6.

Huang, Q.

L. Bettini, T. Christen, T. Burger, and Q. Huang, “A reconfigurable DT ΔΣ modulator for multi-standard 2G/3G/4G wireless receivers,” IEEE J. Emer. Sel. Topics Circuits Syst., vol. 5, no. 4, pp. 525–536,  2015.

Hung, T. P.

T. P. Hung, J. Rode, L. E. Larson, and P. M. Asbeck, “Design of H-bridge class-D power amplifiers for digital pulse modulation transmitters,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, pp. 2845–2855,  2007.

I, C.-L.

C.-L. I, Y. Yuan, J. Huang, S. Ma, C. Cui, and R. Duan, “Rethink fronthaul for soft RAN,” IEEE Commun. Mag., vol. 53, no. 9, pp. 82–88,  2015.

C.-L. I and J. Huang, “RAN revolution with NGFI (xHaul) for 5G,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper W1C.7.

C.-L. I, J. Huang, Y. Yuan, S. Ma, and R. Duan, “NGFI, the xHaul,” in Proc. IEEE Globecom Workshops, 2015, pp. 1–6.

Ibl, H.

H. Ibl and C. Klaus, “DOCSIS 3.1 application note,” Rohde Schwarz white paper, 7MH89_0E, 2015. [Online]. Available: http://www.rohde-schwarz-usa.com/rs/rohdeschwarz/images/7mh89_oe-docsis3.1.pdf

Ives, D.

I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightw. Technol., vol. 27, no. 15, pp. 3042–3049,  2009.

Jang, S.

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2484–2487,  2014.

Jeong, K.-T.

S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightw. Technol., vol. 22, no. 11, pp. 2582–2591,  2004.

Jerng, A.

A. Jerng and C. G. Sodini, “A wideband ΔΣ digital-RF modulator for high data rate transmitters,” IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1710–1722,  2007.

Jia, Z.

J. Wang, Z. Jia, L. A. Campos, C. Knittle, and G. Chang, “Optical coherent transmission of 20x192-MHz DOCSIS 3.1 channels with 16384QAM based on delta-sigma digitization,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th1K.1.

Jin, H.

J. T. Chapman, G. White, and H. Jin, “Impact of CCAP to CM distance in a remote PHY architecture,” CableLabs, NCTA, SCTE, Spring Technical Forum, 2015.

Jo, G.

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2484–2487,  2014.

Jung, J.

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2484–2487,  2014.

Kaiser, A.

A. Frappe, A. Flament, B. Stefanelli, A. Kaiser, and A. Cathelin, “An all-digital RF signal generator using high-speed ΔΣ modulators,” IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2722–2732,  2009.

Kaneda, N.

A. Leven, N. Kaneda, U. V. Koc, and Y. K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 366–368,  2007.

Kanno, A.

A. Kanno and T. Kawanishi, “Analog signal transmission by FPGA-based pseudo-delta-sigma modulator,” in Proc. IEEE Photon. Conf., 2015, pp. 136–137.

Kawanishi, T.

A. Kanno and T. Kawanishi, “Analog signal transmission by FPGA-based pseudo-delta-sigma modulator,” in Proc. IEEE Photon. Conf., 2015, pp. 136–137.

Kikuchi, K.

K. Kikuchi, “Polarization-demultiplexing algorithm in the digital coherent receiver,” in Proc. Dig. IEEE/LEOS Summer Topical Meetings, 2008, pp. 101–102.

Kitamura, K.

K. Kitamura, S. Sasaki, Y. Matsuya, and T. Douseki, “Optical wireless digital-sound transmission system with 1-bit ΔΣ-modulated visible light and spherical Si solar cells,” IEEE Sens. J., vol. 10, no. 11, pp. 1753–1758,  2010.

Klaus, C.

H. Ibl and C. Klaus, “DOCSIS 3.1 application note,” Rohde Schwarz white paper, 7MH89_0E, 2015. [Online]. Available: http://www.rohde-schwarz-usa.com/rs/rohdeschwarz/images/7mh89_oe-docsis3.1.pdf

Knittle, C.

J. Wang, Z. Jia, L. A. Campos, C. Knittle, and G. Chang, “Optical coherent transmission of 20x192-MHz DOCSIS 3.1 channels with 16384QAM based on delta-sigma digitization,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th1K.1.

Knopik, V.

A. Pozsgay, T. Zounes, R. Hossain, M. Boulemnakher, V. Knopik, and S. Grange, “A fully digital 65nm CMOS transmitter for the 2.4-to-2.7GHz WiFi/WiMAX bands using 5.4 GHz ΔΣ RF DACs,” in Proc. IEEE Int. Solid-State Circuits Conf., 2008, pp. 360–361.

Koc, U. V.

A. Leven, N. Kaneda, U. V. Koc, and Y. K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 366–368,  2007.

Kramer, G.

G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): Building a next-generation optical access network,” IEEE Commun. Mag., vol. 40, no. 2, pp. 66–73,  2002.

Larsen, T.

M. Nielsen and T. Larsen, “A transmitter architecture based on delta-sigma modulation and switch-mode power amplification,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 54, no. 8, pp. 735–739,  2007.

Larson, L. E.

T. P. Hung, J. Rode, L. E. Larson, and P. M. Asbeck, “Design of H-bridge class-D power amplifiers for digital pulse modulation transmitters,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, pp. 2845–2855,  2007.

Lee, C.-H.

S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightw. Technol., vol. 22, no. 11, pp. 2582–2591,  2004.

Leven, A.

A. Leven, N. Kaneda, U. V. Koc, and Y. K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 366–368,  2007.

Liu, C.

J. Wang, C. Liu, M. Zhu, A. Yi, L. Cheng, and G. K. Chang, “Investigation of data-dependent channel cross-modulation in multiband radio-over-fiber systems,” J. Lightw. Technol., vol. 32, no. 10, pp. 1861–1871,  2014.

J. Wang, C. Liu, M. Zhu, M. Xu, Z. Dong, and G.-K. Chang, “Characterization and mitigation of nonlinear intermodulations in multichannel OFDM radio-over-fiber systems,” in Proc. Eur. Conf. Opt. Commun., 2014, Paper P.7.18.

Luo, Y.

Y. Luoet al., “Time- and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON stage 2 (NG-PON2),” J. Lightw. Technol., vol. 31, no. 4, pp. 587–593,  2013.

Ma, R.

S. Chung, R. Ma, S. Shinjo, H. Nakamizo, K. Parsons, and K. H. Teo, “Concurrent multiband digital outphasing transmitter architecture using multidimensional power coding,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 598–613,  2015.

Ma, S.

C.-L. I, Y. Yuan, J. Huang, S. Ma, C. Cui, and R. Duan, “Rethink fronthaul for soft RAN,” IEEE Commun. Mag., vol. 53, no. 9, pp. 82–88,  2015.

C.-L. I, J. Huang, Y. Yuan, S. Ma, and R. Duan, “NGFI, the xHaul,” in Proc. IEEE Globecom Workshops, 2015, pp. 1–6.

Martin, J.

B. Hamzeh, M. Toy, Y. Fu, and J. Martin, “DOCSIS 3.1: Scaling broadband cable to Gigabit speeds,” IEEE Commun. Mag., vol. 53, no. 3, pp. 108–113,  2015.

M. Toy, J. Martin, M. Schmitt, and V. Blake, “Next generation cable networks with DOCSIS 3.1 technology,” IEEE Commun. Mag., vol. 53, no. 3, pp. 106–107,  2015.

Matsuya, Y.

K. Kitamura, S. Sasaki, Y. Matsuya, and T. Douseki, “Optical wireless digital-sound transmission system with 1-bit ΔΣ-modulated visible light and spherical Si solar cells,” IEEE Sens. J., vol. 10, no. 11, pp. 1753–1758,  2010.

Mehmood, H.

H. Mehmood, S. Rahman, and J. M. Cioffi, “Bit loading profiles for high-speed data in DOCSIS 3.1,” IEEE Commun. Mag., vol. 53, no. 3, pp. 114–120,  2015.

Miller, M. R.

M. R. Miller and C. S. Petrie, “A multibit sigma-delta ADC for multimode receivers,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 475–482,  2003.

Nakamizo, H.

S. Chung, R. Ma, S. Shinjo, H. Nakamizo, K. Parsons, and K. H. Teo, “Concurrent multiband digital outphasing transmitter architecture using multidimensional power coding,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 598–613,  2015.

Negra, R.

F. M. Ghannouchi, S. Hatami, P. Aflaki, M. Helaoui, and R. Negra, “Accurate power efficiency estimation of GHz wireless delta-sigma transmitters for different classes of switching mode power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 2812–2819,  2010.

Nielsen, M.

M. Nielsen and T. Larsen, “A transmitter architecture based on delta-sigma modulation and switch-mode power amplification,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 54, no. 8, pp. 735–739,  2007.

Nikolic, B.

C. Wu, E. Alon, and B. Nikolić, “A wideband 400 MHz-to-4 GHz direct RF-to-digital multimode ΔΣ receiver,” IEEE J. Solid-State Circuits, vol. 49, no. 7, pp. 1639–1652,  2014.

Oliveira, A. S. R.

N. V. Silva, A. S. R. Oliveira, and N. B. Carvalho, “Design and optimization of flexible and coding efficient all-digital RF transmitters,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 625–632,  2013.

Park, B.

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2484–2487,  2014.

Park, H.-J.

S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightw. Technol., vol. 22, no. 11, pp. 2582–2591,  2004.

Park, S.-J.

S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightw. Technol., vol. 22, no. 11, pp. 2582–2591,  2004.

Parsons, K.

S. Chung, R. Ma, S. Shinjo, H. Nakamizo, K. Parsons, and K. H. Teo, “Concurrent multiband digital outphasing transmitter architecture using multidimensional power coding,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 598–613,  2015.

Pesavento, G.

G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): Building a next-generation optical access network,” IEEE Commun. Mag., vol. 40, no. 2, pp. 66–73,  2002.

Pessoa, L. M.

Petrie, C. S.

M. R. Miller and C. S. Petrie, “A multibit sigma-delta ADC for multimode receivers,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 475–482,  2003.

Pfeiffer, T.

T. Pfeiffer, “Next generation mobile fronthaul and midhaul architectures,” IEEE/OSA J. Opt. Commun. Netw., vol. 7, no. 11, pp. B38–B45,  2015.

Pizzinat, A.

A. Pizzinat, P. Chanclou, F. Saliou, and T. Diallo, “Things you should know about fronthaul,” J. Lightw. Technol., vol. 33, no. 5, pp. 1077–1083,  2015.

Pozsgay, A.

A. Pozsgay, T. Zounes, R. Hossain, M. Boulemnakher, V. Knopik, and S. Grange, “A fully digital 65nm CMOS transmitter for the 2.4-to-2.7GHz WiFi/WiMAX bands using 5.4 GHz ΔΣ RF DACs,” in Proc. IEEE Int. Solid-State Circuits Conf., 2008, pp. 360–361.

Qian, H.

H. Qian, J. Chen, S. Yao, Z. Yu, H. Zhang, and W. Xu, “One-bit sigma-delta modulator for nonlinear visible light communication systems,” IEEE Photon. Technol. Lett., vol. 27, no. 4, pp. 419–422,  2015.

Rahman, S.

H. Mehmood, S. Rahman, and J. M. Cioffi, “Bit loading profiles for high-speed data in DOCSIS 3.1,” IEEE Commun. Mag., vol. 53, no. 3, pp. 114–120,  2015.

Rice, D.

D. Rice, “DOCSIS 3.1 technology and hybrid fiber coax for multi-Gbps broadband,” in Proc. Opt. Fiber Commun. Conf., 2015, Paper Th4B.1.

Rode, J.

T. P. Hung, J. Rode, L. E. Larson, and P. M. Asbeck, “Design of H-bridge class-D power amplifiers for digital pulse modulation transmitters,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, pp. 2845–2855,  2007.

Salgado, H. M.

Salib, H.

H. Salib, “FTTU: MSO perspective,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Th1I.1.

Salinger, J. D.

J. D. Salinger, “Distributed architectures and converged access network,” CableLabs, NCTA, SCTE, Spring Technical Forum, 2016.

J. D. Salinger, “Remote PHY: Why and how,” CableLabs, NCTA, SCTE, Spring Technical Forum, 2014.

Saliou, F.

A. Pizzinat, P. Chanclou, F. Saliou, and T. Diallo, “Things you should know about fronthaul,” J. Lightw. Technol., vol. 33, no. 5, pp. 1077–1083,  2015.

Sasaki, S.

K. Kitamura, S. Sasaki, Y. Matsuya, and T. Douseki, “Optical wireless digital-sound transmission system with 1-bit ΔΣ-modulated visible light and spherical Si solar cells,” IEEE Sens. J., vol. 10, no. 11, pp. 1753–1758,  2010.

Savory, S. J.

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1164–1179,  2010.

I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightw. Technol., vol. 27, no. 15, pp. 3042–3049,  2009.

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express, vol. 16, no. 2, pp. 804–817, 2008.

Schmitt, M.

M. Toy, J. Martin, M. Schmitt, and V. Blake, “Next generation cable networks with DOCSIS 3.1 technology,” IEEE Commun. Mag., vol. 53, no. 3, pp. 106–107,  2015.

Schreier, R.

R. Schreier, Delta Sigma Toolbox: high-level design and simulation of delta-sigma modulators. 2016. [Online]. Available: http://www.mathworks.com/matlabcentral/fileexchange/19-delta-sigma-toolbox

R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. New York, NY, USA: Wiley,  2004.

Shinjo, S.

S. Chung, R. Ma, S. Shinjo, H. Nakamizo, K. Parsons, and K. H. Teo, “Concurrent multiband digital outphasing transmitter architecture using multidimensional power coding,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 598–613,  2015.

Silva, N. V.

N. V. Silva, A. S. R. Oliveira, and N. B. Carvalho, “Design and optimization of flexible and coding efficient all-digital RF transmitters,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 625–632,  2013.

Sodini, C. G.

A. Jerng and C. G. Sodini, “A wideband ΔΣ digital-RF modulator for high data rate transmitters,” IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1710–1722,  2007.

Song, K.-H.

S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightw. Technol., vol. 22, no. 11, pp. 2582–2591,  2004.

Sorensen, H. V.

P. M. Aziz, H. V. Sorensen, and J. V. der Spiegel, “An overview of sigma-delta converters,” IEEE Signal Process. Mag., vol. 13, no. 1, pp. 61–84,  1996.

Stefanelli, B.

A. Frappe, A. Flament, B. Stefanelli, A. Kaiser, and A. Cathelin, “An all-digital RF signal generator using high-speed ΔΣ modulators,” IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2722–2732,  2009.

Sundaresan, K.

K. Sundaresan, DOCSIS 3.1 High Level Overview at NANOG 59, Cable Television Laboratories, Inc., Louisville, CO, USA, 2013. [Online]. Available: https://www.nanog.org/sites/default/files/wed.general.sundaresan.docsis.35.pdf

Tavares, J. S.

Temes, G. C.

R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. New York, NY, USA: Wiley,  2004.

Teo, K. H.

S. Chung, R. Ma, S. Shinjo, H. Nakamizo, K. Parsons, and K. H. Teo, “Concurrent multiband digital outphasing transmitter architecture using multidimensional power coding,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 598–613,  2015.

Toy, M.

M. Toy, J. Martin, M. Schmitt, and V. Blake, “Next generation cable networks with DOCSIS 3.1 technology,” IEEE Commun. Mag., vol. 53, no. 3, pp. 106–107,  2015.

B. Hamzeh, M. Toy, Y. Fu, and J. Martin, “DOCSIS 3.1: Scaling broadband cable to Gigabit speeds,” IEEE Commun. Mag., vol. 53, no. 3, pp. 108–113,  2015.

M. Toy, Cable Networks, Services, and Management, IEEE Press Series on Networks and Services Management. New York, NY, USA: Wiley, 2015, ch. 1.

Viterbi, A. J.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory, vol. IT-29, no. 4, pp. 543–551,  1983.

Viterbi, A. M.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory, vol. IT-29, no. 4, pp. 543–551,  1983.

Wang, J.

J. Wanget al., “Digital mobile fronthaul based on delta-sigma modulation for 32 LTE carrier aggregation and FBMC signals,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 2, pp. A233–A244,  2017.

J. Wanget al., “Nonlinear inter-band subcarrier intermodulations for multi-RAT OFDM wireless services in 5G heterogeneous mobile fronthaul networks,” J. Lightw. Technol., vol. 34, no. 17, pp. 4089–4103,  2016.

J. Wang, C. Liu, M. Zhu, A. Yi, L. Cheng, and G. K. Chang, “Investigation of data-dependent channel cross-modulation in multiband radio-over-fiber systems,” J. Lightw. Technol., vol. 32, no. 10, pp. 1861–1871,  2014.

J. Wang, C. Liu, M. Zhu, M. Xu, Z. Dong, and G.-K. Chang, “Characterization and mitigation of nonlinear intermodulations in multichannel OFDM radio-over-fiber systems,” in Proc. Eur. Conf. Opt. Commun., 2014, Paper P.7.18.

J. Wang, Z. Jia, L. A. Campos, C. Knittle, and G. Chang, “Optical coherent transmission of 20x192-MHz DOCSIS 3.1 channels with 16384QAM based on delta-sigma digitization,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th1K.1.

J. Wanget al., “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE/30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper W1H.2.

J. Wanget al., “10-Gbaud OOK/PAM4 digital mobile fronthaul based on one-bit/two-bit delta-sigma modulation supporting carrier aggregation of 32 LTE-A signals,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper W.4.P1.SC7.1.

Wepman, J. A.

J. A. Wepman, “Analog-to-digital converters and their applications in radio receivers,” IEEE Commun. Mag., vol. 33, no. 5, pp. 39–45,  1995.

White, G.

J. T. Chapman, G. White, and H. Jin, “Impact of CCAP to CM distance in a remote PHY architecture,” CableLabs, NCTA, SCTE, Spring Technical Forum, 2015.

Wu, C.

C. Wu, E. Alon, and B. Nikolić, “A wideband 400 MHz-to-4 GHz direct RF-to-digital multimode ΔΣ receiver,” IEEE J. Solid-State Circuits, vol. 49, no. 7, pp. 1639–1652,  2014.

Xu, M.

J. Wang, C. Liu, M. Zhu, M. Xu, Z. Dong, and G.-K. Chang, “Characterization and mitigation of nonlinear intermodulations in multichannel OFDM radio-over-fiber systems,” in Proc. Eur. Conf. Opt. Commun., 2014, Paper P.7.18.

Xu, W.

H. Qian, J. Chen, S. Yao, Z. Yu, H. Zhang, and W. Xu, “One-bit sigma-delta modulator for nonlinear visible light communication systems,” IEEE Photon. Technol. Lett., vol. 27, no. 4, pp. 419–422,  2015.

Yao, S.

H. Qian, J. Chen, S. Yao, Z. Yu, H. Zhang, and W. Xu, “One-bit sigma-delta modulator for nonlinear visible light communication systems,” IEEE Photon. Technol. Lett., vol. 27, no. 4, pp. 419–422,  2015.

Yi, A.

J. Wang, C. Liu, M. Zhu, A. Yi, L. Cheng, and G. K. Chang, “Investigation of data-dependent channel cross-modulation in multiband radio-over-fiber systems,” J. Lightw. Technol., vol. 32, no. 10, pp. 1861–1871,  2014.

Yu, Z.

H. Qian, J. Chen, S. Yao, Z. Yu, H. Zhang, and W. Xu, “One-bit sigma-delta modulator for nonlinear visible light communication systems,” IEEE Photon. Technol. Lett., vol. 27, no. 4, pp. 419–422,  2015.

Yuan, Y.

C.-L. I, Y. Yuan, J. Huang, S. Ma, C. Cui, and R. Duan, “Rethink fronthaul for soft RAN,” IEEE Commun. Mag., vol. 53, no. 9, pp. 82–88,  2015.

C.-L. I, J. Huang, Y. Yuan, S. Ma, and R. Duan, “NGFI, the xHaul,” in Proc. IEEE Globecom Workshops, 2015, pp. 1–6.

Zhang, H.

H. Qian, J. Chen, S. Yao, Z. Yu, H. Zhang, and W. Xu, “One-bit sigma-delta modulator for nonlinear visible light communication systems,” IEEE Photon. Technol. Lett., vol. 27, no. 4, pp. 419–422,  2015.

Zhu, M.

J. Wang, C. Liu, M. Zhu, A. Yi, L. Cheng, and G. K. Chang, “Investigation of data-dependent channel cross-modulation in multiband radio-over-fiber systems,” J. Lightw. Technol., vol. 32, no. 10, pp. 1861–1871,  2014.

J. Wang, C. Liu, M. Zhu, M. Xu, Z. Dong, and G.-K. Chang, “Characterization and mitigation of nonlinear intermodulations in multichannel OFDM radio-over-fiber systems,” in Proc. Eur. Conf. Opt. Commun., 2014, Paper P.7.18.

Zounes, T.

A. Pozsgay, T. Zounes, R. Hossain, M. Boulemnakher, V. Knopik, and S. Grange, “A fully digital 65nm CMOS transmitter for the 2.4-to-2.7GHz WiFi/WiMAX bands using 5.4 GHz ΔΣ RF DACs,” in Proc. IEEE Int. Solid-State Circuits Conf., 2008, pp. 360–361.

CableLabs, NCTA, SCTE, Spring Technical Forum (4)

J. D. Salinger, “Remote PHY: Why and how,” CableLabs, NCTA, SCTE, Spring Technical Forum, 2014.

J. T. Chapman, “Remote PHY for converged DOCSIS, video and OOB,” CableLabs, NCTA, SCTE, Spring Technical Forum, 2014.

J. T. Chapman, G. White, and H. Jin, “Impact of CCAP to CM distance in a remote PHY architecture,” CableLabs, NCTA, SCTE, Spring Technical Forum, 2015.

J. D. Salinger, “Distributed architectures and converged access network,” CableLabs, NCTA, SCTE, Spring Technical Forum, 2016.

China Mobile (1)

China Mobile, “C-RAN the road towards green RAN (version 2.5),” White Paper,  2011.

IEEE Commun. Mag. (6)

G. Kramer and G. Pesavento, “Ethernet passive optical network (EPON): Building a next-generation optical access network,” IEEE Commun. Mag., vol. 40, no. 2, pp. 66–73,  2002.

B. Hamzeh, M. Toy, Y. Fu, and J. Martin, “DOCSIS 3.1: Scaling broadband cable to Gigabit speeds,” IEEE Commun. Mag., vol. 53, no. 3, pp. 108–113,  2015.

M. Toy, J. Martin, M. Schmitt, and V. Blake, “Next generation cable networks with DOCSIS 3.1 technology,” IEEE Commun. Mag., vol. 53, no. 3, pp. 106–107,  2015.

H. Mehmood, S. Rahman, and J. M. Cioffi, “Bit loading profiles for high-speed data in DOCSIS 3.1,” IEEE Commun. Mag., vol. 53, no. 3, pp. 114–120,  2015.

J. A. Wepman, “Analog-to-digital converters and their applications in radio receivers,” IEEE Commun. Mag., vol. 33, no. 5, pp. 39–45,  1995.

C.-L. I, Y. Yuan, J. Huang, S. Ma, C. Cui, and R. Duan, “Rethink fronthaul for soft RAN,” IEEE Commun. Mag., vol. 53, no. 9, pp. 82–88,  2015.

IEEE Commun. Surveys Tuts. (1)

A. Checkoet al., “Cloud RAN for mobile networks—A technology overview,” IEEE Commun. Surveys Tuts., vol. 17, no. 1, pp. 405–426,  2015.

IEEE J. Emer. Sel. Topics Circuits Syst. (1)

L. Bettini, T. Christen, T. Burger, and Q. Huang, “A reconfigurable DT ΔΣ modulator for multi-standard 2G/3G/4G wireless receivers,” IEEE J. Emer. Sel. Topics Circuits Syst., vol. 5, no. 4, pp. 525–536,  2015.

IEEE J. Sel. Topics Quantum Electron. (1)

S. J. Savory, “Digital coherent optical receivers: Algorithms and subsystems,” IEEE J. Sel. Topics Quantum Electron., vol. 16, no. 5, pp. 1164–1179,  2010.

IEEE J. Solid-State Circuits (5)

M. R. Miller and C. S. Petrie, “A multibit sigma-delta ADC for multimode receivers,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 475–482,  2003.

J. Ariaset al., “A 32-mW 320-MHz continuous-time complex delta-sigma ADC for multi-mode wireless-LAN receivers,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 339–351,  2006.

C. Wu, E. Alon, and B. Nikolić, “A wideband 400 MHz-to-4 GHz direct RF-to-digital multimode ΔΣ receiver,” IEEE J. Solid-State Circuits, vol. 49, no. 7, pp. 1639–1652,  2014.

A. Jerng and C. G. Sodini, “A wideband ΔΣ digital-RF modulator for high data rate transmitters,” IEEE J. Solid-State Circuits, vol. 42, no. 8, pp. 1710–1722,  2007.

A. Frappe, A. Flament, B. Stefanelli, A. Kaiser, and A. Cathelin, “An all-digital RF signal generator using high-speed ΔΣ modulators,” IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2722–2732,  2009.

IEEE Photon. Technol. Lett. (4)

A. Leven, N. Kaneda, U. V. Koc, and Y. K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett., vol. 19, no. 6, pp. 366–368,  2007.

S. Hoffmannet al., “Frequency and phase estimation for coherent QPSK transmission with unlocked DFB lasers,” IEEE Photon. Technol. Lett., vol. 20, no. 18, pp. 1569–1571,  2008.

H. Qian, J. Chen, S. Yao, Z. Yu, H. Zhang, and W. Xu, “One-bit sigma-delta modulator for nonlinear visible light communication systems,” IEEE Photon. Technol. Lett., vol. 27, no. 4, pp. 419–422,  2015.

S. Jang, G. Jo, J. Jung, B. Park, and S. Hong, “A digitized IF-over-fiber transmission based on low-pass delta-sigma modulation,” IEEE Photon. Technol. Lett., vol. 26, no. 24, pp. 2484–2487,  2014.

IEEE Sens. J. (1)

K. Kitamura, S. Sasaki, Y. Matsuya, and T. Douseki, “Optical wireless digital-sound transmission system with 1-bit ΔΣ-modulated visible light and spherical Si solar cells,” IEEE Sens. J., vol. 10, no. 11, pp. 1753–1758,  2010.

IEEE Signal Process. Mag. (1)

P. M. Aziz, H. V. Sorensen, and J. V. der Spiegel, “An overview of sigma-delta converters,” IEEE Signal Process. Mag., vol. 13, no. 1, pp. 61–84,  1996.

IEEE Trans. Circuits Syst. II, Express Briefs (1)

M. Nielsen and T. Larsen, “A transmitter architecture based on delta-sigma modulation and switch-mode power amplification,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 54, no. 8, pp. 735–739,  2007.

IEEE Trans. Commun. (2)

R. Gray, “Oversampled sigma-delta modulation,” IEEE Trans. Commun., vol. COM-35, no. 5, pp. 481–489,  1987.

D. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication systems,” IEEE Trans. Commun., vol. 28, no. 11, pp. 1867–1875,  1980.

IEEE Trans. Inf. Theory (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory, vol. IT-29, no. 4, pp. 543–551,  1983.

IEEE Trans. Microw. Theory Techn. (4)

T. P. Hung, J. Rode, L. E. Larson, and P. M. Asbeck, “Design of H-bridge class-D power amplifiers for digital pulse modulation transmitters,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 12, pp. 2845–2855,  2007.

F. M. Ghannouchi, S. Hatami, P. Aflaki, M. Helaoui, and R. Negra, “Accurate power efficiency estimation of GHz wireless delta-sigma transmitters for different classes of switching mode power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 11, pp. 2812–2819,  2010.

N. V. Silva, A. S. R. Oliveira, and N. B. Carvalho, “Design and optimization of flexible and coding efficient all-digital RF transmitters,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 625–632,  2013.

S. Chung, R. Ma, S. Shinjo, H. Nakamizo, K. Parsons, and K. H. Teo, “Concurrent multiband digital outphasing transmitter architecture using multidimensional power coding,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 598–613,  2015.

IEEE/OSA J. Opt. Commun. Netw. (2)

T. Pfeiffer, “Next generation mobile fronthaul and midhaul architectures,” IEEE/OSA J. Opt. Commun. Netw., vol. 7, no. 11, pp. B38–B45,  2015.

J. Wanget al., “Digital mobile fronthaul based on delta-sigma modulation for 32 LTE carrier aggregation and FBMC signals,” IEEE/OSA J. Opt. Commun. Netw., vol. 9, no. 2, pp. A233–A244,  2017.

J. Lightw. Technol. (6)

I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightw. Technol., vol. 27, no. 15, pp. 3042–3049,  2009.

A. Pizzinat, P. Chanclou, F. Saliou, and T. Diallo, “Things you should know about fronthaul,” J. Lightw. Technol., vol. 33, no. 5, pp. 1077–1083,  2015.

S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightw. Technol., vol. 22, no. 11, pp. 2582–2591,  2004.

Y. Luoet al., “Time- and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON stage 2 (NG-PON2),” J. Lightw. Technol., vol. 31, no. 4, pp. 587–593,  2013.

J. Wang, C. Liu, M. Zhu, A. Yi, L. Cheng, and G. K. Chang, “Investigation of data-dependent channel cross-modulation in multiband radio-over-fiber systems,” J. Lightw. Technol., vol. 32, no. 10, pp. 1861–1871,  2014.

J. Wanget al., “Nonlinear inter-band subcarrier intermodulations for multi-RAT OFDM wireless services in 5G heterogeneous mobile fronthaul networks,” J. Lightw. Technol., vol. 34, no. 17, pp. 4089–4103,  2016.

Opt. Express (2)

Other (25)

J. Wanget al., “Delta-sigma modulation for digital mobile fronthaul enabling carrier aggregation of 32 4G-LTE/30 5G-FBMC signals in a single-λ 10-Gb/s IM-DD channel,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper W1H.2.

J. Wanget al., “10-Gbaud OOK/PAM4 digital mobile fronthaul based on one-bit/two-bit delta-sigma modulation supporting carrier aggregation of 32 LTE-A signals,” in Proc. Eur. Conf. Opt. Commun., 2016, Paper W.4.P1.SC7.1.

A. Kanno and T. Kawanishi, “Analog signal transmission by FPGA-based pseudo-delta-sigma modulator,” in Proc. IEEE Photon. Conf., 2015, pp. 136–137.

J. Wang, Z. Jia, L. A. Campos, C. Knittle, and G. Chang, “Optical coherent transmission of 20x192-MHz DOCSIS 3.1 channels with 16384QAM based on delta-sigma digitization,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper Th1K.1.

Data-Over-Cable Service Interface Specifications, DCA-MHAv2, Remote PHY Specification, CM-SP-R-PHY-I07-170524, Cable Television Laboratories, Inc., Louisville, CO, USA,  2017.

C.-L. I and J. Huang, “RAN revolution with NGFI (xHaul) for 5G,” in Proc. Opt. Fiber Commun. Conf., 2017, Paper W1C.7.

S. S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ, USA: Prentice-Hall, 2001.

C.-L. I, J. Huang, Y. Yuan, S. Ma, and R. Duan, “NGFI, the xHaul,” in Proc. IEEE Globecom Workshops, 2015, pp. 1–6.

K. Kikuchi, “Polarization-demultiplexing algorithm in the digital coherent receiver,” in Proc. Dig. IEEE/LEOS Summer Topical Meetings, 2008, pp. 101–102.

Common Public Radio Interface (CPRI), Specification V7.0 (2015-10-09). 2015. [Online]. Available: http://www.cpri.info/downloads/CPRI_v_7_0_2015-10-09.pdf

R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters. New York, NY, USA: Wiley,  2004.

R. Schreier, Delta Sigma Toolbox: high-level design and simulation of delta-sigma modulators. 2016. [Online]. Available: http://www.mathworks.com/matlabcentral/fileexchange/19-delta-sigma-toolbox

A. Pozsgay, T. Zounes, R. Hossain, M. Boulemnakher, V. Knopik, and S. Grange, “A fully digital 65nm CMOS transmitter for the 2.4-to-2.7GHz WiFi/WiMAX bands using 5.4 GHz ΔΣ RF DACs,” in Proc. IEEE Int. Solid-State Circuits Conf., 2008, pp. 360–361.

J. Wang, C. Liu, M. Zhu, M. Xu, Z. Dong, and G.-K. Chang, “Characterization and mitigation of nonlinear intermodulations in multichannel OFDM radio-over-fiber systems,” in Proc. Eur. Conf. Opt. Commun., 2014, Paper P.7.18.

M. Toy, Cable Networks, Services, and Management, IEEE Press Series on Networks and Services Management. New York, NY, USA: Wiley, 2015, ch. 1.

Ovum report, “HFC: Delivering Gigabit Broadband,” 2016. [Online]. Available: http://www.nbnco.com.au/content/dam/nbnco2/documents/HFC%20Delivering%20Gigabit%20Broadband%20Ovum%20Report.pdf

D. Rice, “DOCSIS 3.1 technology and hybrid fiber coax for multi-Gbps broadband,” in Proc. Opt. Fiber Commun. Conf., 2015, Paper Th4B.1.

H. Salib, “FTTU: MSO perspective,” in Proc. Opt. Fiber Commun. Conf., 2016, Paper Th1I.1.

Data-Over-Cable Service Interface Specifications, DOCSIS 3.1, Physical Layer Specification, CM-SP-PHYv3.1-I09-160602, Cable Television Laboratories, Inc., Louisville, CO, USA,  2016.

DOCSIS 3.1 Physical & MAC Layer Quick Reference Pocket Guide,” Cable Television Laboratories, Inc., Louisville, CO, USA,  2014.

K. Sundaresan, DOCSIS 3.1 High Level Overview at NANOG 59, Cable Television Laboratories, Inc., Louisville, CO, USA, 2013. [Online]. Available: https://www.nanog.org/sites/default/files/wed.general.sundaresan.docsis.35.pdf

A. Al-Banna and T. Cloonan, “The spectral efficiency of DOCSIS 3.1 systems,” Arris white paper, 2014. [Online]. Available: https://www.arris.com/globalassets/resources/white-papers/arris_spectral_efficiency_of_docsis_wp.pdf

H. Ibl and C. Klaus, “DOCSIS 3.1 application note,” Rohde Schwarz white paper, 7MH89_0E, 2015. [Online]. Available: http://www.rohde-schwarz-usa.com/rs/rohdeschwarz/images/7mh89_oe-docsis3.1.pdf

Evolved Universal Terrestrial Radio Access (E-UTRA); Carrier Aggregation; Base Station (BS) Radio Transmission and Reception, Release 10, 3GPP TR 36.808, V10.1.0,  2013.

New WI Proposal: LTE Carrier Aggregation Enhancement Beyond 5 Carriers, 3GPP RP-142286,  2014.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.