Abstract

We discuss and propose millimeter-wave linear cell systems for signal distribution on railway radiocommunication systems between train and trackside, and a foreign object debris detection system for airport runways using the radio-over-fiber network technology. Linear cell configurations based on wavelength-division multiplexing (WDM) and power-splitter-based distribution networks are discussed and demonstrated experimentally. A single-sideband modulation for data transmission in an intermediate frequency over a fiber system is successfully transmitted with an ultrafast wavelength-tunable laser diode for WDM routing to track the train car within 3 $\mu$ s. Radar signal distribution by an optical double-sideband suppressed-carrier modulation mitigates the dispersion effect of the fiber cable to transmit a 32-GHz signal into the remote radar heads.

© 2017 OAPA

PDF Article

References

  • View by:

  1. J. G. Andrewset al., “What will 5G be?” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065–1082, 2014.
  2. “Attenuation of atmospheric gases,” International Telecommunications Union, Geneva, Switzerland, Recommendation ITU-R P.676-5, 2001.
  3. T. Kawanishi, A. Kanno, T. Kuri, and N. Yamamoto, “Transparent waveform transfer for resilient and low-latency links,” IEEE Photon. Soc. Newslett., vol. 28, no. 4, pp. 4–8, 2014.
  4. A. Kannoet al., “Waveform over fiber: DSP-aided coherent fiber-wireless transmission using millimeter and terahertz waves,” Proc. SPIE, vol. 9387, 2015, Art. no. .
  5. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon., vol. 1, pp. 319–330, 2007.
  6. C. Limet al., “Fiber-wireless networks and subsystem technologies,” J. Lightw. Technol., vol. 28, no. 4, pp. 390–405, 2010.
  7. K. Kitayama, “Coordinated role of optical and radio network in 5G-era,” in Proc. Int. Top. Meet. Microw. Photon., Paphos, Cyprus, Plenary talk, Oct. 2015, pp. 1–4.
  8. K.-D. Lin, and J.-F. Chang, “Communications and entertainment onboard a high-speed public transport system,” IEEE Wireless Commun., vol. 9, no. 1, pp. 84–89, 2002.
  9. Y. Shen, Y. Tang, T. Kong, and S. Shao, “Optimal antenna location for STBC-OFDM downlink with distributed transmit antennas in linear cells,” IEEE Commun. Lett., vol. 11, no. 5, pp. 387–389, 2007.
  10. A. Kanno, P. T. Dat, T. Kawanishi, N. Yonemoto, and N. Shibagaki, “90-GHz radio-on-radio-over-fiber system for linearly located distributed antenna systems,” in Proc. IEEE Photon. Global Conf., Singapore, Dec. 2012, Paper oral3-4B-3.
  11. P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications,” IEEE Commun. Mag., vol. 53, no. 10, pp. 86–94, 2015.
  12. H. Nishimotoet al., “Millimeter-wave train radio communication system based on linear cell concept,” in Proc. Int. Symp. Speed-up Serv. Technol. Railw. Maglev Syst., Chiba, Japan, Nov. 2015, Paper 2E11.
  13. B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Radio-over-fiber-based solution to provide broadband internet access to train passengers,” IEEE Commun. Mag., vol. 45, no. 2, pp. 56–62, 2007.
  14. J. Wang, H. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Area Commun., vol. 30, no. 4, pp. 675–683, 2012.
  15. I. Gasulla and J. Capmany, “Microwave photonics application of multicore fibers,” IEEE Photon. J., vol. 4, no. 3, pp. 877–888, 2012.
  16. S. Akiba, M. Oishi, J. Hirokawa, M. Ando, K. Minoguchi, and Y. Nishikawa, “Photonics architecture for beam forming of RF phased array antenna,” in Proc. Opt. Fiber Commun. Conf., San Francisco, USA, 2014, Paper W2A.51.
  17. A. Kanno, P. T. Dat, N. Yamamoto, and T. Kawanishi, “Millimeter-wave radio-over-fiber system for high-speed railway communication,” in Proc. Prog. Electromagn. Res. Symp., Shanghai, China, Nov. 2016, pp. 3911–3915.
  18. A. Kanno, “Millimeter- and terahertz-wave over fiber technologies for high-speed communications and non-telecom applications,” in Proc. SPIE, vol. 10128, 2017, Art. no. .
  19. K. J. Williams, “Microwave photonics: The past and the future,” in Proc. Opt. Fiber Commun. Conf., Anaheim, USA, Mar. 2013, Paper OTu2H.1.
  20. A. Kannoet al., “Radio over fiber signal generation and distribution and its application to train communication network,” in Proc. Conf. Laser Electro-Opt./Opto-Elect. Commun. Conf./Photon. Global Conf., Singapore, Aug. 2017, pp. 1–2.
  21. Y.-K. Yeo, Z. Xu, C.-Y. Liaw, D. Wang, Y. Wang, and T.-H. Cheng, “A 448 $\times$ 448 optical cross-connect for high-performance computers and multi-terabit/s routers,” in Proc. Opt. Fiber Commun. Conf., San Diego, USA, Mar. 2010, Paper OMP6.
  22. T. Leonard, T. Lamont-Smith, R. Hodges, and P. Beasley, “94-GHz Tarsier radar measurements of wind waves and small targets,” in Proc. 8th Eur. Radar Conf., Manchester, U.K., Oct. 2011, pp. 73–76.
  23. Y. Yonemoto, A. Kohmura, S. Futatsumori, T. Uebo, and A. Saillard, “Broad band RF module of millimeter wave radar network for airport FOD detection system,” in Proc. 2009 Int. Radar Conf. Surveillance Safer World, Bordeaux, France, 2009, pp. 1–4.
  24. A. Kanno and T. Kawanishi, “Broadband frequency-modulated continuous-wave signal generation by optical modulation technique,” J. Lightw. Technol., vol. 34, no. 20, pp. 3566–3572, 2014.
  25. “Chapter II Frequencies,” in ITU Radio Regulations 2016 ed., Geneva: ITU, 2016.
  26. T. Kawanishi, A. Kanno, N. Shibgaki, N. Yonemoto, T. Angkaew, and P. Janpugdee, “Field trial of radio-over-fiber based high-resolution radar,” in Proc. Thailand-Jpn. Microw., Bangkok, Thailand, Aug. 2015, Paper FR4-03.
  27. S. Futatsumori, K. Morita, A. Kohmura, K. Okada, and N. Yonemoto, “Design and field feasibility evaluation of distributed-type 96 GHz FMCW millimeter-wave radar based on radio-over-fiber and optical frequency multiplier,” J. Lightw. Technol., vol. 34, no. 20, pp. 4835–4843, 2016.
  28. N. Shibagaki, “Experimental study of photonic based radar for FOD detection systems using 90 GHz-band,” Air Traffic Manage. Syst., vol. 420, pp. 239–248, 2017.
  29. T. Kawanishi, “Optical fiber network-connected distributed mm-wave radar system,” in Proc. IEEE Photon. Soc. Summer Top. Meeting Ser., Puerto Rico, Jul. 2017, pp. 197–198.

2017 (1)

N. Shibagaki, “Experimental study of photonic based radar for FOD detection systems using 90 GHz-band,” Air Traffic Manage. Syst., vol. 420, pp. 239–248, 2017.

2016 (1)

S. Futatsumori, K. Morita, A. Kohmura, K. Okada, and N. Yonemoto, “Design and field feasibility evaluation of distributed-type 96 GHz FMCW millimeter-wave radar based on radio-over-fiber and optical frequency multiplier,” J. Lightw. Technol., vol. 34, no. 20, pp. 4835–4843, 2016.

2015 (2)

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications,” IEEE Commun. Mag., vol. 53, no. 10, pp. 86–94, 2015.

A. Kannoet al., “Waveform over fiber: DSP-aided coherent fiber-wireless transmission using millimeter and terahertz waves,” Proc. SPIE, vol. 9387, 2015, Art. no. .

2014 (3)

J. G. Andrewset al., “What will 5G be?” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065–1082, 2014.

T. Kawanishi, A. Kanno, T. Kuri, and N. Yamamoto, “Transparent waveform transfer for resilient and low-latency links,” IEEE Photon. Soc. Newslett., vol. 28, no. 4, pp. 4–8, 2014.

A. Kanno and T. Kawanishi, “Broadband frequency-modulated continuous-wave signal generation by optical modulation technique,” J. Lightw. Technol., vol. 34, no. 20, pp. 3566–3572, 2014.

2012 (2)

J. Wang, H. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Area Commun., vol. 30, no. 4, pp. 675–683, 2012.

I. Gasulla and J. Capmany, “Microwave photonics application of multicore fibers,” IEEE Photon. J., vol. 4, no. 3, pp. 877–888, 2012.

2010 (1)

C. Limet al., “Fiber-wireless networks and subsystem technologies,” J. Lightw. Technol., vol. 28, no. 4, pp. 390–405, 2010.

2007 (3)

Y. Shen, Y. Tang, T. Kong, and S. Shao, “Optimal antenna location for STBC-OFDM downlink with distributed transmit antennas in linear cells,” IEEE Commun. Lett., vol. 11, no. 5, pp. 387–389, 2007.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon., vol. 1, pp. 319–330, 2007.

B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Radio-over-fiber-based solution to provide broadband internet access to train passengers,” IEEE Commun. Mag., vol. 45, no. 2, pp. 56–62, 2007.

2002 (1)

K.-D. Lin, and J.-F. Chang, “Communications and entertainment onboard a high-speed public transport system,” IEEE Wireless Commun., vol. 9, no. 1, pp. 84–89, 2002.

2001 (1)

“Attenuation of atmospheric gases,” International Telecommunications Union, Geneva, Switzerland, Recommendation ITU-R P.676-5, 2001.

Akiba, S.

S. Akiba, M. Oishi, J. Hirokawa, M. Ando, K. Minoguchi, and Y. Nishikawa, “Photonics architecture for beam forming of RF phased array antenna,” in Proc. Opt. Fiber Commun. Conf., San Francisco, USA, 2014, Paper W2A.51.

Ando, M.

S. Akiba, M. Oishi, J. Hirokawa, M. Ando, K. Minoguchi, and Y. Nishikawa, “Photonics architecture for beam forming of RF phased array antenna,” in Proc. Opt. Fiber Commun. Conf., San Francisco, USA, 2014, Paper W2A.51.

Andrews, J. G.

J. G. Andrewset al., “What will 5G be?” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065–1082, 2014.

Angkaew, T.

T. Kawanishi, A. Kanno, N. Shibgaki, N. Yonemoto, T. Angkaew, and P. Janpugdee, “Field trial of radio-over-fiber based high-resolution radar,” in Proc. Thailand-Jpn. Microw., Bangkok, Thailand, Aug. 2015, Paper FR4-03.

Beasley, P.

T. Leonard, T. Lamont-Smith, R. Hodges, and P. Beasley, “94-GHz Tarsier radar measurements of wind waves and small targets,” in Proc. 8th Eur. Radar Conf., Manchester, U.K., Oct. 2011, pp. 73–76.

Capmany, J.

I. Gasulla and J. Capmany, “Microwave photonics application of multicore fibers,” IEEE Photon. J., vol. 4, no. 3, pp. 877–888, 2012.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon., vol. 1, pp. 319–330, 2007.

Chang, J.-F.

K.-D. Lin, and J.-F. Chang, “Communications and entertainment onboard a high-speed public transport system,” IEEE Wireless Commun., vol. 9, no. 1, pp. 84–89, 2002.

Cheng, T.-H.

Y.-K. Yeo, Z. Xu, C.-Y. Liaw, D. Wang, Y. Wang, and T.-H. Cheng, “A 448 $\times$ 448 optical cross-connect for high-performance computers and multi-terabit/s routers,” in Proc. Opt. Fiber Commun. Conf., San Diego, USA, Mar. 2010, Paper OMP6.

Colle, D.

B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Radio-over-fiber-based solution to provide broadband internet access to train passengers,” IEEE Commun. Mag., vol. 45, no. 2, pp. 56–62, 2007.

Dat, P. T.

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications,” IEEE Commun. Mag., vol. 53, no. 10, pp. 86–94, 2015.

A. Kanno, P. T. Dat, T. Kawanishi, N. Yonemoto, and N. Shibagaki, “90-GHz radio-on-radio-over-fiber system for linearly located distributed antenna systems,” in Proc. IEEE Photon. Global Conf., Singapore, Dec. 2012, Paper oral3-4B-3.

A. Kanno, P. T. Dat, N. Yamamoto, and T. Kawanishi, “Millimeter-wave radio-over-fiber system for high-speed railway communication,” in Proc. Prog. Electromagn. Res. Symp., Shanghai, China, Nov. 2016, pp. 3911–3915.

Demeester, P.

B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Radio-over-fiber-based solution to provide broadband internet access to train passengers,” IEEE Commun. Mag., vol. 45, no. 2, pp. 56–62, 2007.

Futatsumori, S.

S. Futatsumori, K. Morita, A. Kohmura, K. Okada, and N. Yonemoto, “Design and field feasibility evaluation of distributed-type 96 GHz FMCW millimeter-wave radar based on radio-over-fiber and optical frequency multiplier,” J. Lightw. Technol., vol. 34, no. 20, pp. 4835–4843, 2016.

Y. Yonemoto, A. Kohmura, S. Futatsumori, T. Uebo, and A. Saillard, “Broad band RF module of millimeter wave radar network for airport FOD detection system,” in Proc. 2009 Int. Radar Conf. Surveillance Safer World, Bordeaux, France, 2009, pp. 1–4.

Gasulla, I.

I. Gasulla and J. Capmany, “Microwave photonics application of multicore fibers,” IEEE Photon. J., vol. 4, no. 3, pp. 877–888, 2012.

Gomes, N. J.

J. Wang, H. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Area Commun., vol. 30, no. 4, pp. 675–683, 2012.

Hirokawa, J.

S. Akiba, M. Oishi, J. Hirokawa, M. Ando, K. Minoguchi, and Y. Nishikawa, “Photonics architecture for beam forming of RF phased array antenna,” in Proc. Opt. Fiber Commun. Conf., San Francisco, USA, 2014, Paper W2A.51.

Hodges, R.

T. Leonard, T. Lamont-Smith, R. Hodges, and P. Beasley, “94-GHz Tarsier radar measurements of wind waves and small targets,” in Proc. 8th Eur. Radar Conf., Manchester, U.K., Oct. 2011, pp. 73–76.

Janpugdee, P.

T. Kawanishi, A. Kanno, N. Shibgaki, N. Yonemoto, T. Angkaew, and P. Janpugdee, “Field trial of radio-over-fiber based high-resolution radar,” in Proc. Thailand-Jpn. Microw., Bangkok, Thailand, Aug. 2015, Paper FR4-03.

Kanno, A.

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications,” IEEE Commun. Mag., vol. 53, no. 10, pp. 86–94, 2015.

A. Kannoet al., “Waveform over fiber: DSP-aided coherent fiber-wireless transmission using millimeter and terahertz waves,” Proc. SPIE, vol. 9387, 2015, Art. no. .

T. Kawanishi, A. Kanno, T. Kuri, and N. Yamamoto, “Transparent waveform transfer for resilient and low-latency links,” IEEE Photon. Soc. Newslett., vol. 28, no. 4, pp. 4–8, 2014.

A. Kanno and T. Kawanishi, “Broadband frequency-modulated continuous-wave signal generation by optical modulation technique,” J. Lightw. Technol., vol. 34, no. 20, pp. 3566–3572, 2014.

T. Kawanishi, A. Kanno, N. Shibgaki, N. Yonemoto, T. Angkaew, and P. Janpugdee, “Field trial of radio-over-fiber based high-resolution radar,” in Proc. Thailand-Jpn. Microw., Bangkok, Thailand, Aug. 2015, Paper FR4-03.

A. Kanno, P. T. Dat, N. Yamamoto, and T. Kawanishi, “Millimeter-wave radio-over-fiber system for high-speed railway communication,” in Proc. Prog. Electromagn. Res. Symp., Shanghai, China, Nov. 2016, pp. 3911–3915.

A. Kanno, “Millimeter- and terahertz-wave over fiber technologies for high-speed communications and non-telecom applications,” in Proc. SPIE, vol. 10128, 2017, Art. no. .

A. Kannoet al., “Radio over fiber signal generation and distribution and its application to train communication network,” in Proc. Conf. Laser Electro-Opt./Opto-Elect. Commun. Conf./Photon. Global Conf., Singapore, Aug. 2017, pp. 1–2.

A. Kanno, P. T. Dat, T. Kawanishi, N. Yonemoto, and N. Shibagaki, “90-GHz radio-on-radio-over-fiber system for linearly located distributed antenna systems,” in Proc. IEEE Photon. Global Conf., Singapore, Dec. 2012, Paper oral3-4B-3.

Kawanishi, T.

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications,” IEEE Commun. Mag., vol. 53, no. 10, pp. 86–94, 2015.

T. Kawanishi, A. Kanno, T. Kuri, and N. Yamamoto, “Transparent waveform transfer for resilient and low-latency links,” IEEE Photon. Soc. Newslett., vol. 28, no. 4, pp. 4–8, 2014.

A. Kanno and T. Kawanishi, “Broadband frequency-modulated continuous-wave signal generation by optical modulation technique,” J. Lightw. Technol., vol. 34, no. 20, pp. 3566–3572, 2014.

T. Kawanishi, A. Kanno, N. Shibgaki, N. Yonemoto, T. Angkaew, and P. Janpugdee, “Field trial of radio-over-fiber based high-resolution radar,” in Proc. Thailand-Jpn. Microw., Bangkok, Thailand, Aug. 2015, Paper FR4-03.

A. Kanno, P. T. Dat, N. Yamamoto, and T. Kawanishi, “Millimeter-wave radio-over-fiber system for high-speed railway communication,” in Proc. Prog. Electromagn. Res. Symp., Shanghai, China, Nov. 2016, pp. 3911–3915.

A. Kanno, P. T. Dat, T. Kawanishi, N. Yonemoto, and N. Shibagaki, “90-GHz radio-on-radio-over-fiber system for linearly located distributed antenna systems,” in Proc. IEEE Photon. Global Conf., Singapore, Dec. 2012, Paper oral3-4B-3.

T. Kawanishi, “Optical fiber network-connected distributed mm-wave radar system,” in Proc. IEEE Photon. Soc. Summer Top. Meeting Ser., Puerto Rico, Jul. 2017, pp. 197–198.

Kitayama, K.

K. Kitayama, “Coordinated role of optical and radio network in 5G-era,” in Proc. Int. Top. Meet. Microw. Photon., Paphos, Cyprus, Plenary talk, Oct. 2015, pp. 1–4.

Kohmura, A.

S. Futatsumori, K. Morita, A. Kohmura, K. Okada, and N. Yonemoto, “Design and field feasibility evaluation of distributed-type 96 GHz FMCW millimeter-wave radar based on radio-over-fiber and optical frequency multiplier,” J. Lightw. Technol., vol. 34, no. 20, pp. 4835–4843, 2016.

Y. Yonemoto, A. Kohmura, S. Futatsumori, T. Uebo, and A. Saillard, “Broad band RF module of millimeter wave radar network for airport FOD detection system,” in Proc. 2009 Int. Radar Conf. Surveillance Safer World, Bordeaux, France, 2009, pp. 1–4.

Kong, T.

Y. Shen, Y. Tang, T. Kong, and S. Shao, “Optimal antenna location for STBC-OFDM downlink with distributed transmit antennas in linear cells,” IEEE Commun. Lett., vol. 11, no. 5, pp. 387–389, 2007.

Kuri, T.

T. Kawanishi, A. Kanno, T. Kuri, and N. Yamamoto, “Transparent waveform transfer for resilient and low-latency links,” IEEE Photon. Soc. Newslett., vol. 28, no. 4, pp. 4–8, 2014.

Lamont-Smith, T.

T. Leonard, T. Lamont-Smith, R. Hodges, and P. Beasley, “94-GHz Tarsier radar measurements of wind waves and small targets,” in Proc. 8th Eur. Radar Conf., Manchester, U.K., Oct. 2011, pp. 73–76.

Lannoo, B.

B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Radio-over-fiber-based solution to provide broadband internet access to train passengers,” IEEE Commun. Mag., vol. 45, no. 2, pp. 56–62, 2007.

Leonard, T.

T. Leonard, T. Lamont-Smith, R. Hodges, and P. Beasley, “94-GHz Tarsier radar measurements of wind waves and small targets,” in Proc. 8th Eur. Radar Conf., Manchester, U.K., Oct. 2011, pp. 73–76.

Liaw, C.-Y.

Y.-K. Yeo, Z. Xu, C.-Y. Liaw, D. Wang, Y. Wang, and T.-H. Cheng, “A 448 $\times$ 448 optical cross-connect for high-performance computers and multi-terabit/s routers,” in Proc. Opt. Fiber Commun. Conf., San Diego, USA, Mar. 2010, Paper OMP6.

Lim, C.

C. Limet al., “Fiber-wireless networks and subsystem technologies,” J. Lightw. Technol., vol. 28, no. 4, pp. 390–405, 2010.

Lin, K.-D.

K.-D. Lin, and J.-F. Chang, “Communications and entertainment onboard a high-speed public transport system,” IEEE Wireless Commun., vol. 9, no. 1, pp. 84–89, 2002.

Minoguchi, K.

S. Akiba, M. Oishi, J. Hirokawa, M. Ando, K. Minoguchi, and Y. Nishikawa, “Photonics architecture for beam forming of RF phased array antenna,” in Proc. Opt. Fiber Commun. Conf., San Francisco, USA, 2014, Paper W2A.51.

Morita, K.

S. Futatsumori, K. Morita, A. Kohmura, K. Okada, and N. Yonemoto, “Design and field feasibility evaluation of distributed-type 96 GHz FMCW millimeter-wave radar based on radio-over-fiber and optical frequency multiplier,” J. Lightw. Technol., vol. 34, no. 20, pp. 4835–4843, 2016.

Nishikawa, Y.

S. Akiba, M. Oishi, J. Hirokawa, M. Ando, K. Minoguchi, and Y. Nishikawa, “Photonics architecture for beam forming of RF phased array antenna,” in Proc. Opt. Fiber Commun. Conf., San Francisco, USA, 2014, Paper W2A.51.

Nishimoto, H.

H. Nishimotoet al., “Millimeter-wave train radio communication system based on linear cell concept,” in Proc. Int. Symp. Speed-up Serv. Technol. Railw. Maglev Syst., Chiba, Japan, Nov. 2015, Paper 2E11.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon., vol. 1, pp. 319–330, 2007.

Oishi, M.

S. Akiba, M. Oishi, J. Hirokawa, M. Ando, K. Minoguchi, and Y. Nishikawa, “Photonics architecture for beam forming of RF phased array antenna,” in Proc. Opt. Fiber Commun. Conf., San Francisco, USA, 2014, Paper W2A.51.

Okada, K.

S. Futatsumori, K. Morita, A. Kohmura, K. Okada, and N. Yonemoto, “Design and field feasibility evaluation of distributed-type 96 GHz FMCW millimeter-wave radar based on radio-over-fiber and optical frequency multiplier,” J. Lightw. Technol., vol. 34, no. 20, pp. 4835–4843, 2016.

Pickavet, M.

B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Radio-over-fiber-based solution to provide broadband internet access to train passengers,” IEEE Commun. Mag., vol. 45, no. 2, pp. 56–62, 2007.

Saillard, A.

Y. Yonemoto, A. Kohmura, S. Futatsumori, T. Uebo, and A. Saillard, “Broad band RF module of millimeter wave radar network for airport FOD detection system,” in Proc. 2009 Int. Radar Conf. Surveillance Safer World, Bordeaux, France, 2009, pp. 1–4.

Shao, S.

Y. Shen, Y. Tang, T. Kong, and S. Shao, “Optimal antenna location for STBC-OFDM downlink with distributed transmit antennas in linear cells,” IEEE Commun. Lett., vol. 11, no. 5, pp. 387–389, 2007.

Shen, Y.

Y. Shen, Y. Tang, T. Kong, and S. Shao, “Optimal antenna location for STBC-OFDM downlink with distributed transmit antennas in linear cells,” IEEE Commun. Lett., vol. 11, no. 5, pp. 387–389, 2007.

Shibagaki, N.

N. Shibagaki, “Experimental study of photonic based radar for FOD detection systems using 90 GHz-band,” Air Traffic Manage. Syst., vol. 420, pp. 239–248, 2017.

A. Kanno, P. T. Dat, T. Kawanishi, N. Yonemoto, and N. Shibagaki, “90-GHz radio-on-radio-over-fiber system for linearly located distributed antenna systems,” in Proc. IEEE Photon. Global Conf., Singapore, Dec. 2012, Paper oral3-4B-3.

Shibgaki, N.

T. Kawanishi, A. Kanno, N. Shibgaki, N. Yonemoto, T. Angkaew, and P. Janpugdee, “Field trial of radio-over-fiber based high-resolution radar,” in Proc. Thailand-Jpn. Microw., Bangkok, Thailand, Aug. 2015, Paper FR4-03.

Tang, Y.

Y. Shen, Y. Tang, T. Kong, and S. Shao, “Optimal antenna location for STBC-OFDM downlink with distributed transmit antennas in linear cells,” IEEE Commun. Lett., vol. 11, no. 5, pp. 387–389, 2007.

Uebo, T.

Y. Yonemoto, A. Kohmura, S. Futatsumori, T. Uebo, and A. Saillard, “Broad band RF module of millimeter wave radar network for airport FOD detection system,” in Proc. 2009 Int. Radar Conf. Surveillance Safer World, Bordeaux, France, 2009, pp. 1–4.

Wang, D.

Y.-K. Yeo, Z. Xu, C.-Y. Liaw, D. Wang, Y. Wang, and T.-H. Cheng, “A 448 $\times$ 448 optical cross-connect for high-performance computers and multi-terabit/s routers,” in Proc. Opt. Fiber Commun. Conf., San Diego, USA, Mar. 2010, Paper OMP6.

Wang, J.

J. Wang, H. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Area Commun., vol. 30, no. 4, pp. 675–683, 2012.

Wang, Y.

Y.-K. Yeo, Z. Xu, C.-Y. Liaw, D. Wang, Y. Wang, and T.-H. Cheng, “A 448 $\times$ 448 optical cross-connect for high-performance computers and multi-terabit/s routers,” in Proc. Opt. Fiber Commun. Conf., San Diego, USA, Mar. 2010, Paper OMP6.

Williams, K. J.

K. J. Williams, “Microwave photonics: The past and the future,” in Proc. Opt. Fiber Commun. Conf., Anaheim, USA, Mar. 2013, Paper OTu2H.1.

Xu, Z.

Y.-K. Yeo, Z. Xu, C.-Y. Liaw, D. Wang, Y. Wang, and T.-H. Cheng, “A 448 $\times$ 448 optical cross-connect for high-performance computers and multi-terabit/s routers,” in Proc. Opt. Fiber Commun. Conf., San Diego, USA, Mar. 2010, Paper OMP6.

Yamamoto, N.

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications,” IEEE Commun. Mag., vol. 53, no. 10, pp. 86–94, 2015.

T. Kawanishi, A. Kanno, T. Kuri, and N. Yamamoto, “Transparent waveform transfer for resilient and low-latency links,” IEEE Photon. Soc. Newslett., vol. 28, no. 4, pp. 4–8, 2014.

A. Kanno, P. T. Dat, N. Yamamoto, and T. Kawanishi, “Millimeter-wave radio-over-fiber system for high-speed railway communication,” in Proc. Prog. Electromagn. Res. Symp., Shanghai, China, Nov. 2016, pp. 3911–3915.

Yeo, Y.-K.

Y.-K. Yeo, Z. Xu, C.-Y. Liaw, D. Wang, Y. Wang, and T.-H. Cheng, “A 448 $\times$ 448 optical cross-connect for high-performance computers and multi-terabit/s routers,” in Proc. Opt. Fiber Commun. Conf., San Diego, USA, Mar. 2010, Paper OMP6.

Yonemoto, N.

S. Futatsumori, K. Morita, A. Kohmura, K. Okada, and N. Yonemoto, “Design and field feasibility evaluation of distributed-type 96 GHz FMCW millimeter-wave radar based on radio-over-fiber and optical frequency multiplier,” J. Lightw. Technol., vol. 34, no. 20, pp. 4835–4843, 2016.

T. Kawanishi, A. Kanno, N. Shibgaki, N. Yonemoto, T. Angkaew, and P. Janpugdee, “Field trial of radio-over-fiber based high-resolution radar,” in Proc. Thailand-Jpn. Microw., Bangkok, Thailand, Aug. 2015, Paper FR4-03.

A. Kanno, P. T. Dat, T. Kawanishi, N. Yonemoto, and N. Shibagaki, “90-GHz radio-on-radio-over-fiber system for linearly located distributed antenna systems,” in Proc. IEEE Photon. Global Conf., Singapore, Dec. 2012, Paper oral3-4B-3.

Yonemoto, Y.

Y. Yonemoto, A. Kohmura, S. Futatsumori, T. Uebo, and A. Saillard, “Broad band RF module of millimeter wave radar network for airport FOD detection system,” in Proc. 2009 Int. Radar Conf. Surveillance Safer World, Bordeaux, France, 2009, pp. 1–4.

Zhu, H.

J. Wang, H. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Area Commun., vol. 30, no. 4, pp. 675–683, 2012.

Air Traffic Manage. Syst. (1)

N. Shibagaki, “Experimental study of photonic based radar for FOD detection systems using 90 GHz-band,” Air Traffic Manage. Syst., vol. 420, pp. 239–248, 2017.

IEEE Commun. Lett. (1)

Y. Shen, Y. Tang, T. Kong, and S. Shao, “Optimal antenna location for STBC-OFDM downlink with distributed transmit antennas in linear cells,” IEEE Commun. Lett., vol. 11, no. 5, pp. 387–389, 2007.

IEEE Commun. Mag. (2)

P. T. Dat, A. Kanno, N. Yamamoto, and T. Kawanishi, “WDM RoF-MMW and linearly located distributed antenna system for future high-speed railway communications,” IEEE Commun. Mag., vol. 53, no. 10, pp. 86–94, 2015.

B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, “Radio-over-fiber-based solution to provide broadband internet access to train passengers,” IEEE Commun. Mag., vol. 45, no. 2, pp. 56–62, 2007.

IEEE J. Sel. Area Commun. (1)

J. Wang, H. Zhu, and N. J. Gomes, “Distributed antenna systems for mobile communications in high speed trains,” IEEE J. Sel. Area Commun., vol. 30, no. 4, pp. 675–683, 2012.

IEEE J. Sel. Areas Commun. (1)

J. G. Andrewset al., “What will 5G be?” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065–1082, 2014.

IEEE Photon. J. (1)

I. Gasulla and J. Capmany, “Microwave photonics application of multicore fibers,” IEEE Photon. J., vol. 4, no. 3, pp. 877–888, 2012.

IEEE Photon. Soc. Newslett. (1)

T. Kawanishi, A. Kanno, T. Kuri, and N. Yamamoto, “Transparent waveform transfer for resilient and low-latency links,” IEEE Photon. Soc. Newslett., vol. 28, no. 4, pp. 4–8, 2014.

IEEE Wireless Commun. (1)

K.-D. Lin, and J.-F. Chang, “Communications and entertainment onboard a high-speed public transport system,” IEEE Wireless Commun., vol. 9, no. 1, pp. 84–89, 2002.

International Telecommunications Union, Geneva, Switzerland, Recommendation ITU-R P.676-5 (1)

“Attenuation of atmospheric gases,” International Telecommunications Union, Geneva, Switzerland, Recommendation ITU-R P.676-5, 2001.

J. Lightw. Technol. (3)

C. Limet al., “Fiber-wireless networks and subsystem technologies,” J. Lightw. Technol., vol. 28, no. 4, pp. 390–405, 2010.

A. Kanno and T. Kawanishi, “Broadband frequency-modulated continuous-wave signal generation by optical modulation technique,” J. Lightw. Technol., vol. 34, no. 20, pp. 3566–3572, 2014.

S. Futatsumori, K. Morita, A. Kohmura, K. Okada, and N. Yonemoto, “Design and field feasibility evaluation of distributed-type 96 GHz FMCW millimeter-wave radar based on radio-over-fiber and optical frequency multiplier,” J. Lightw. Technol., vol. 34, no. 20, pp. 4835–4843, 2016.

Nature Photon. (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nature Photon., vol. 1, pp. 319–330, 2007.

Proc. SPIE (1)

A. Kannoet al., “Waveform over fiber: DSP-aided coherent fiber-wireless transmission using millimeter and terahertz waves,” Proc. SPIE, vol. 9387, 2015, Art. no. .

Other (14)

K. Kitayama, “Coordinated role of optical and radio network in 5G-era,” in Proc. Int. Top. Meet. Microw. Photon., Paphos, Cyprus, Plenary talk, Oct. 2015, pp. 1–4.

S. Akiba, M. Oishi, J. Hirokawa, M. Ando, K. Minoguchi, and Y. Nishikawa, “Photonics architecture for beam forming of RF phased array antenna,” in Proc. Opt. Fiber Commun. Conf., San Francisco, USA, 2014, Paper W2A.51.

A. Kanno, P. T. Dat, N. Yamamoto, and T. Kawanishi, “Millimeter-wave radio-over-fiber system for high-speed railway communication,” in Proc. Prog. Electromagn. Res. Symp., Shanghai, China, Nov. 2016, pp. 3911–3915.

A. Kanno, “Millimeter- and terahertz-wave over fiber technologies for high-speed communications and non-telecom applications,” in Proc. SPIE, vol. 10128, 2017, Art. no. .

K. J. Williams, “Microwave photonics: The past and the future,” in Proc. Opt. Fiber Commun. Conf., Anaheim, USA, Mar. 2013, Paper OTu2H.1.

A. Kannoet al., “Radio over fiber signal generation and distribution and its application to train communication network,” in Proc. Conf. Laser Electro-Opt./Opto-Elect. Commun. Conf./Photon. Global Conf., Singapore, Aug. 2017, pp. 1–2.

Y.-K. Yeo, Z. Xu, C.-Y. Liaw, D. Wang, Y. Wang, and T.-H. Cheng, “A 448 $\times$ 448 optical cross-connect for high-performance computers and multi-terabit/s routers,” in Proc. Opt. Fiber Commun. Conf., San Diego, USA, Mar. 2010, Paper OMP6.

T. Leonard, T. Lamont-Smith, R. Hodges, and P. Beasley, “94-GHz Tarsier radar measurements of wind waves and small targets,” in Proc. 8th Eur. Radar Conf., Manchester, U.K., Oct. 2011, pp. 73–76.

Y. Yonemoto, A. Kohmura, S. Futatsumori, T. Uebo, and A. Saillard, “Broad band RF module of millimeter wave radar network for airport FOD detection system,” in Proc. 2009 Int. Radar Conf. Surveillance Safer World, Bordeaux, France, 2009, pp. 1–4.

“Chapter II Frequencies,” in ITU Radio Regulations 2016 ed., Geneva: ITU, 2016.

T. Kawanishi, A. Kanno, N. Shibgaki, N. Yonemoto, T. Angkaew, and P. Janpugdee, “Field trial of radio-over-fiber based high-resolution radar,” in Proc. Thailand-Jpn. Microw., Bangkok, Thailand, Aug. 2015, Paper FR4-03.

T. Kawanishi, “Optical fiber network-connected distributed mm-wave radar system,” in Proc. IEEE Photon. Soc. Summer Top. Meeting Ser., Puerto Rico, Jul. 2017, pp. 197–198.

H. Nishimotoet al., “Millimeter-wave train radio communication system based on linear cell concept,” in Proc. Int. Symp. Speed-up Serv. Technol. Railw. Maglev Syst., Chiba, Japan, Nov. 2015, Paper 2E11.

A. Kanno, P. T. Dat, T. Kawanishi, N. Yonemoto, and N. Shibagaki, “90-GHz radio-on-radio-over-fiber system for linearly located distributed antenna systems,” in Proc. IEEE Photon. Global Conf., Singapore, Dec. 2012, Paper oral3-4B-3.

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.