Abstract

The development of integrated photonic circuits utilizing gallium phosphide requires a robust, scalable process for fabrication of GaP-on-insulator devices. Here, we present the first GaP photonic devices on SiO2. The process exploits direct wafer bonding of a GaP/AlxGa1-xP/GaP heterostructure onto a SiO2-on-Si wafer followed by the removal of the GaP substrate and the AlxGa1-xP stop layer. Photonic devices such as grating couplers, waveguides, and ring resonators are patterned by inductively coupled-plasma reactive-ion etching in the top GaP device layer. The peak coupling efficiency of the fabricated grating couplers is as high as −4.8 dB. Optical quality factors of 20 000 as well as second- and third-harmonic generation are observed with the ring resonators. Because the large bandgap of GaP provides for low two-photon absorption at telecommunication wavelengths, the high-yield fabrication of GaP-on-insulator photonic devices enabled by this work is especially interesting for applications in nanophotonics, where high quality factors or low mode volumes can produce high electric field intensities. The large bandgap also enables integrated photonic devices operating at visible wavelengths.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. F. Schubert, “History of light-emitting diodes” in Light-Emitting Diodes, 2nd ed.Cambridge, U.K.: Cambridge Univ. Press, 2006, pp. 1–26.
  2. K. Rivoire, A. Faraon, and J. Vučković, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett., vol. 93, no. 6, 2008, Art. no. .
  3. K. Rivoireet al., “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett., vol. 95, no. 12, 2009, Art. no. .
  4. L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct., Fundam. Appl., vol. 15, pp. 130–136, 2015.
  5. X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett., vol. 100, no. 23, 2012, Art. no. .
  6. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express, vol. 17, no. 25, pp. 22609–22615, 2009.
  7. G. Shambat, K. Rivoire, J. Lu, F. Hatami, and J. Vučković, “Tunable-wavelength second harmonic generation from GaP photonic crystal cavities coupled to fiber tapers,” Opt. Express, vol. 18, no. 12, pp. 12176–12184, 2010.
  8. K. Rivoire, Z. Lin, F. Hatami, and J. Vučković, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett., vol. 97, no. 4, 2010, Art. no. .
  9. M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B, vol. 14, no. 4, pp. 1693–1706, 1976.
  10. C. Santori, P. E. Barclay, K.-M. C. Fu, R. G. Beausoleil, S. Spillan, and M. Fisch, “Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond,” Nanotechnology, vol. 21, no. 27, 2010, Art. no. .
  11. M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett., vol. 104, no. 14, 2014, Art. no. .
  12. P. Seidler, K. Lister, U. Drechsler, H. Rothuizen, J. Hofrichter, and T. Stöferle, “Photonic crystal nanobeam cavities with an ultrahigh quality factor-to-modal volume ratio,” Opt. Express, vol. 21, no. 26, pp. 32468–32483, 2013.
  13. R. Riedingeret al., “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature, vol. 530, no. 7590, pp. 313–316, 2016.
  14. W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys., vol. 36, pp. 1674–1677, 1965.
  15. P. E. Barclay, K.-M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Optics, vol. 17, no. 12, pp. 9588–9601, 2009.
  16. P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett., vol. 95, no. 19, 2009, Art. no. .
  17. N. Thomas, R. J. Barbour, Y. C. Song, M. L. Lee, and K. M. C. Fu, “Waveguide-integrated single-crystalline GaP resonators on diamond,” Opt. Express, vol. 22, no. 11, pp. 13555–13564, 2014.
  18. M. Gouldet al., “Large-scale GaP-on-diamond integrated photonics platform for NV center-based quantum information,” J. Opt. Soc. Amer. B, vol. 33, no. 3, pp. B35–B42, 2016.
  19. H. Emmer et al., “Fabrication of single crystal gallium phosphide thin films on glass,” Sci. Rep., vol. 7, no. 1, 2017, Art. no. .
  20. U. D. Daveet al., “Nonlinear properties of dispersion engineered InGaP photonic wire waveguides in the telecommunication range,” Opt. Express, vol. 23, no. 4, pp. 4650–4657, 2015.
  21. L. Ottaviano, M. Pu, E. Semenova, and K. Yvind, “Low-loss high-confinement waveguides and microring resonators in AlGaAs-on-insulator,” Opt. Lett., vol. 41, no. 17, pp. 3996–3998, 2016.
  22. Y. Ueno, V. Ricci, and G. I. Stegeman, “Second-order susceptibility of Ga0.5In0.5P crystals at 1.5 μm and their feasibility for waveguide quasi-phase matching,” J. Opt. Soc. Amer. B, vol. 14, no. 6, pp. 1428–1436, 1997.
  23. N. Ogasawara, R. Ito, and H. Rokukawa, “Second harmonic generation in an AlGaAs double heterostructure laser,” Jpn. J. Appl. Phys.,vol. 26, no. 8, pp. 1386–1387, 1987.
  24. J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations,” J. Cryst. Growth, vol. 27, pp. 118–125, 1974.
  25. L. Czornomaz et al., “Scalability of ultra-thin-body and BOX InGaAs MOSFETs on silicon,” in Proc. Eur. Solid-State Device Res. Conf., Bucharest, Romania, 2013, pp. 143–146.
  26. J. H. Epple, C. Sanchez, T. Chung, K. Y. Cheng, and K. C. Hsieh, “Dry etching of GaP with emphasis on selective etching over AlGaP,” J. Vac. Sci. Technol. B, Microelectron. Nanom. Struct. Process. Meas. Phenom., vol. 20, no. 6, pp. 2252–2255, 2002.
  27. J. E. Ayers, “The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction,” J. Cryst. Growth, vol. 135, nos. 1–2, pp. 71–77, 1994.
  28. K. Schneider and P. Seidler, “Strong optomechanical coupling in a slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio,” Opt. Express, vol. 24, no. 13, pp. 13850–13865, 2016.
  29. P. Seidler, “Optimized process for fabrication of free-standing silicon nanophotonic devices,” J. Vac. Sci. Technol. B, Nanotechnol. Microelectron., Mater. Process. Meas. Phenom., vol. 35, no. 3, 2017, Art. no. .
  30. J. W. Lee, C. J. Santana, C. R. Abernathy, S. J. Pearton, and F. Ren, “Wet chemical etch solutions for AlxGa1-xP,” J. Electrochem. Soc., vol. 143, no. 1, pp. L1–L3, 1996.
  31. J. W. Leeet al., “Plasma etching of III-V semiconductors in BCl3 chemistries: Part I: GaAs and related compounds,” Plasma Chem. Plasma Process., vol. 17, no. 2, pp. 155–167, 1997.
  32. S. J. Peartonet al., “Dry etching characteristics of III-V semiconductors in microwave BCl3 discharges,” Plasma Chem. Plasma Process., vol. 13, no. 2, pp. 311–332, 1993.
  33. S. J. Pearton et al., “High microwave power electron cyclotron resonance etching of III–V semiconductors in CH4/H2/Ar,” J. Vac. Sci. Technol. B, Nanotechnol. Microelectron., Mater. Process. Meas. Phenom., vol. 14, no. 1, p. 118, 1996.
  34. S. Pearton, J. Lee, E. Lambers, and C. Abernathy, “Comparison of dry etching techniques for III‐V semiconductors in CH4/H2/Ar plasmas,” J. Electrochem. Soc., vol. 143, no. 2, pp. 752–758, 1996.
  35. R. J. Shulet al., “High-density plasma etching of compound semiconductors,” J. Vac. Sci. Technol. A, Vac., Surf., Film, vol. 15, no. 3, pp. 633–637, 1997.
  36. R. J. Shul, A. J. Howard, C. B. Vartuli, P. A. Barnes, and W. Seng, “Temperature dependent electron cyclotron resonance etching of InP, GaP, and GaAs,” J. Vac. Sci. Technol. A, Vac., Surf., Film, vol. 14, no. 3, pp. 1102–1106, 1996.
  37. J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, and S. J. Pearton, “Cl2-based dry etching of GaAs, AIGaAs, and GaP,” J. Electrochem. Soc., vol. 143, no. 6, pp. 2010–2014, 2010.
  38. G. Smolinsky, R. P. Chang, and T. M. Mayer, “Plasma etching of III–V compound semiconductor materials and their oxides,” J. Vac. Sci. Technol., vol. 18, no. 1, pp. 12–16, 1981.
  39. S. H. Yang and P. R. Bandaru, “An experimental study of the reactive ion etching (RIE) of GaP using BCl3 plasma processing,” Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol., vol. 143, nos. 1–3, pp. 27–30, 2007.
  40. D. L. Flamm and V. M. Donnelly, “The design of plasma etchants,” Plasma Chem. Plasma Process., vol. 1, no. 4, pp. 317–363, 1981.
  41. C. Welch, “Nanoscale etching in inductively coupled plasmas,” Oxford Instrum., Oxford, U.K., 2011. [Online]. Available: http://www.oxfordplasma.de/pla_news/wh_paper/OIPT-Nanoscale Etching of ICP Plasmas 2011.pdf. Accessed on: 3, 2017.
  42. H. Jansenet al., “RIE lag in high aspect ratio trench etching of silicon,” Microelectron. Eng., vol. 35, nos. 1–4, pp. 45–50, 1997.
  43. R. Waldhäusl, B. Schnabel, E.-B. Kley, and A. Brauer, “Efficient focusing polymer waveguide grating couplers,” Electron. Lett., vol. 33, no. 7, pp. 623–624, 1997.
  44. S. Assefa et al., “A 90nm CMOS intergated nanophotonics technology for 25Gbps WDM optical communications applications,” in Proc. IEEE Int. Electron Devices Meeting, San Francisco, CA, USA, 2012, pp. 809–811.
  45. A. Mekis et al., “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 3, pp. 597–608, 2011.
  46. N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, “Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity,” Opt. Express, vol. 24, no. 15, 2016, Art. no. .
  47. B. E. A. Teich and M. C. Saleh, “Nonlinear optics,” in Fundamentals of Photonics. New York, NY, USA: Wiley, 1992, pp. 873–917.
  48. K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett., vol. 98, no. 26, 2011, Art. no. .
  49. D. P. Lake, M. Mitchell, H. Jayakumar, L. F. Dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, no. 3, 2016, Art. no. .
  50. S. Mariani, A. Andronico, A. Lemaître, I. Favero, S. Ducci, and G. Leo, “Second-harmonic generation in AlGaAs microdisks in the telecom range,” Opt. Lett., vol. 39, no. 10, pp. 3062–3065, 2014.
  51. X. Guo, C. Zou, and H. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/ W conversion efficiency,” Optica, vol. 3, no. 10, pp. 1126–1131, 2016.
  52. A. González-Tudela, C.-L. Hung, D. E. Chang, J. I. Cirac, and H. J. Kimble, “Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals,” Nature Photon., vol. 9, no. 5, pp. 320–325, 2015.
  53. M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica, vol. 3, no. 8, pp. 8–11, 2016.

2017 (2)

H. Emmer et al., “Fabrication of single crystal gallium phosphide thin films on glass,” Sci. Rep., vol. 7, no. 1, 2017, Art. no. .

P. Seidler, “Optimized process for fabrication of free-standing silicon nanophotonic devices,” J. Vac. Sci. Technol. B, Nanotechnol. Microelectron., Mater. Process. Meas. Phenom., vol. 35, no. 3, 2017, Art. no. .

2016 (8)

R. Riedingeret al., “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature, vol. 530, no. 7590, pp. 313–316, 2016.

M. Gouldet al., “Large-scale GaP-on-diamond integrated photonics platform for NV center-based quantum information,” J. Opt. Soc. Amer. B, vol. 33, no. 3, pp. B35–B42, 2016.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. Dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, no. 3, 2016, Art. no. .

N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, “Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity,” Opt. Express, vol. 24, no. 15, 2016, Art. no. .

M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica, vol. 3, no. 8, pp. 8–11, 2016.

K. Schneider and P. Seidler, “Strong optomechanical coupling in a slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio,” Opt. Express, vol. 24, no. 13, pp. 13850–13865, 2016.

L. Ottaviano, M. Pu, E. Semenova, and K. Yvind, “Low-loss high-confinement waveguides and microring resonators in AlGaAs-on-insulator,” Opt. Lett., vol. 41, no. 17, pp. 3996–3998, 2016.

X. Guo, C. Zou, and H. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/ W conversion efficiency,” Optica, vol. 3, no. 10, pp. 1126–1131, 2016.

2015 (3)

U. D. Daveet al., “Nonlinear properties of dispersion engineered InGaP photonic wire waveguides in the telecommunication range,” Opt. Express, vol. 23, no. 4, pp. 4650–4657, 2015.

A. González-Tudela, C.-L. Hung, D. E. Chang, J. I. Cirac, and H. J. Kimble, “Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals,” Nature Photon., vol. 9, no. 5, pp. 320–325, 2015.

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct., Fundam. Appl., vol. 15, pp. 130–136, 2015.

2014 (3)

2013 (1)

2012 (1)

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett., vol. 100, no. 23, 2012, Art. no. .

2011 (2)

A. Mekis et al., “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 3, pp. 597–608, 2011.

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett., vol. 98, no. 26, 2011, Art. no. .

2010 (4)

G. Shambat, K. Rivoire, J. Lu, F. Hatami, and J. Vučković, “Tunable-wavelength second harmonic generation from GaP photonic crystal cavities coupled to fiber tapers,” Opt. Express, vol. 18, no. 12, pp. 12176–12184, 2010.

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, and S. J. Pearton, “Cl2-based dry etching of GaAs, AIGaAs, and GaP,” J. Electrochem. Soc., vol. 143, no. 6, pp. 2010–2014, 2010.

K. Rivoire, Z. Lin, F. Hatami, and J. Vučković, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett., vol. 97, no. 4, 2010, Art. no. .

C. Santori, P. E. Barclay, K.-M. C. Fu, R. G. Beausoleil, S. Spillan, and M. Fisch, “Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond,” Nanotechnology, vol. 21, no. 27, 2010, Art. no. .

2009 (4)

K. Rivoireet al., “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett., vol. 95, no. 12, 2009, Art. no. .

P. E. Barclay, K.-M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Optics, vol. 17, no. 12, pp. 9588–9601, 2009.

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett., vol. 95, no. 19, 2009, Art. no. .

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express, vol. 17, no. 25, pp. 22609–22615, 2009.

2008 (1)

K. Rivoire, A. Faraon, and J. Vučković, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett., vol. 93, no. 6, 2008, Art. no. .

2007 (1)

S. H. Yang and P. R. Bandaru, “An experimental study of the reactive ion etching (RIE) of GaP using BCl3 plasma processing,” Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol., vol. 143, nos. 1–3, pp. 27–30, 2007.

2002 (1)

J. H. Epple, C. Sanchez, T. Chung, K. Y. Cheng, and K. C. Hsieh, “Dry etching of GaP with emphasis on selective etching over AlGaP,” J. Vac. Sci. Technol. B, Microelectron. Nanom. Struct. Process. Meas. Phenom., vol. 20, no. 6, pp. 2252–2255, 2002.

1997 (5)

R. J. Shulet al., “High-density plasma etching of compound semiconductors,” J. Vac. Sci. Technol. A, Vac., Surf., Film, vol. 15, no. 3, pp. 633–637, 1997.

H. Jansenet al., “RIE lag in high aspect ratio trench etching of silicon,” Microelectron. Eng., vol. 35, nos. 1–4, pp. 45–50, 1997.

R. Waldhäusl, B. Schnabel, E.-B. Kley, and A. Brauer, “Efficient focusing polymer waveguide grating couplers,” Electron. Lett., vol. 33, no. 7, pp. 623–624, 1997.

Y. Ueno, V. Ricci, and G. I. Stegeman, “Second-order susceptibility of Ga0.5In0.5P crystals at 1.5 μm and their feasibility for waveguide quasi-phase matching,” J. Opt. Soc. Amer. B, vol. 14, no. 6, pp. 1428–1436, 1997.

J. W. Leeet al., “Plasma etching of III-V semiconductors in BCl3 chemistries: Part I: GaAs and related compounds,” Plasma Chem. Plasma Process., vol. 17, no. 2, pp. 155–167, 1997.

1996 (4)

J. W. Lee, C. J. Santana, C. R. Abernathy, S. J. Pearton, and F. Ren, “Wet chemical etch solutions for AlxGa1-xP,” J. Electrochem. Soc., vol. 143, no. 1, pp. L1–L3, 1996.

R. J. Shul, A. J. Howard, C. B. Vartuli, P. A. Barnes, and W. Seng, “Temperature dependent electron cyclotron resonance etching of InP, GaP, and GaAs,” J. Vac. Sci. Technol. A, Vac., Surf., Film, vol. 14, no. 3, pp. 1102–1106, 1996.

S. J. Pearton et al., “High microwave power electron cyclotron resonance etching of III–V semiconductors in CH4/H2/Ar,” J. Vac. Sci. Technol. B, Nanotechnol. Microelectron., Mater. Process. Meas. Phenom., vol. 14, no. 1, p. 118, 1996.

S. Pearton, J. Lee, E. Lambers, and C. Abernathy, “Comparison of dry etching techniques for III‐V semiconductors in CH4/H2/Ar plasmas,” J. Electrochem. Soc., vol. 143, no. 2, pp. 752–758, 1996.

1994 (1)

J. E. Ayers, “The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction,” J. Cryst. Growth, vol. 135, nos. 1–2, pp. 71–77, 1994.

1993 (1)

S. J. Peartonet al., “Dry etching characteristics of III-V semiconductors in microwave BCl3 discharges,” Plasma Chem. Plasma Process., vol. 13, no. 2, pp. 311–332, 1993.

1987 (1)

N. Ogasawara, R. Ito, and H. Rokukawa, “Second harmonic generation in an AlGaAs double heterostructure laser,” Jpn. J. Appl. Phys.,vol. 26, no. 8, pp. 1386–1387, 1987.

1981 (2)

D. L. Flamm and V. M. Donnelly, “The design of plasma etchants,” Plasma Chem. Plasma Process., vol. 1, no. 4, pp. 317–363, 1981.

G. Smolinsky, R. P. Chang, and T. M. Mayer, “Plasma etching of III–V compound semiconductor materials and their oxides,” J. Vac. Sci. Technol., vol. 18, no. 1, pp. 12–16, 1981.

1976 (1)

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B, vol. 14, no. 4, pp. 1693–1706, 1976.

1974 (1)

J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations,” J. Cryst. Growth, vol. 27, pp. 118–125, 1974.

1965 (1)

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys., vol. 36, pp. 1674–1677, 1965.

Abernathy, C.

S. Pearton, J. Lee, E. Lambers, and C. Abernathy, “Comparison of dry etching techniques for III‐V semiconductors in CH4/H2/Ar plasmas,” J. Electrochem. Soc., vol. 143, no. 2, pp. 752–758, 1996.

Abernathy, C. R.

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, and S. J. Pearton, “Cl2-based dry etching of GaAs, AIGaAs, and GaP,” J. Electrochem. Soc., vol. 143, no. 6, pp. 2010–2014, 2010.

J. W. Lee, C. J. Santana, C. R. Abernathy, S. J. Pearton, and F. Ren, “Wet chemical etch solutions for AlxGa1-xP,” J. Electrochem. Soc., vol. 143, no. 1, pp. L1–L3, 1996.

Andronico, A.

Assefa, S.

S. Assefa et al., “A 90nm CMOS intergated nanophotonics technology for 25Gbps WDM optical communications applications,” in Proc. IEEE Int. Electron Devices Meeting, San Francisco, CA, USA, 2012, pp. 809–811.

Ayers, J. E.

J. E. Ayers, “The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction,” J. Cryst. Growth, vol. 135, nos. 1–2, pp. 71–77, 1994.

Bakhru, H.

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct., Fundam. Appl., vol. 15, pp. 130–136, 2015.

Bandaru, P. R.

S. H. Yang and P. R. Bandaru, “An experimental study of the reactive ion etching (RIE) of GaP using BCl3 plasma processing,” Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol., vol. 143, nos. 1–3, pp. 27–30, 2007.

Barbour, R. J.

Barclay, P. E.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. Dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, no. 3, 2016, Art. no. .

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett., vol. 104, no. 14, 2014, Art. no. .

C. Santori, P. E. Barclay, K.-M. C. Fu, R. G. Beausoleil, S. Spillan, and M. Fisch, “Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond,” Nanotechnology, vol. 21, no. 27, 2010, Art. no. .

P. E. Barclay, K.-M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Optics, vol. 17, no. 12, pp. 9588–9601, 2009.

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett., vol. 95, no. 19, 2009, Art. no. .

Barnes, P. A.

R. J. Shul, A. J. Howard, C. B. Vartuli, P. A. Barnes, and W. Seng, “Temperature dependent electron cyclotron resonance etching of InP, GaP, and GaAs,” J. Vac. Sci. Technol. A, Vac., Surf., Film, vol. 14, no. 3, pp. 1102–1106, 1996.

Beausoleil, R. G.

C. Santori, P. E. Barclay, K.-M. C. Fu, R. G. Beausoleil, S. Spillan, and M. Fisch, “Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond,” Nanotechnology, vol. 21, no. 27, 2010, Art. no. .

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett., vol. 95, no. 19, 2009, Art. no. .

P. E. Barclay, K.-M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Optics, vol. 17, no. 12, pp. 9588–9601, 2009.

Blakeslee, A. E.

J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations,” J. Cryst. Growth, vol. 27, pp. 118–125, 1974.

Bond, W. L.

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys., vol. 36, pp. 1674–1677, 1965.

Brauer, A.

R. Waldhäusl, B. Schnabel, E.-B. Kley, and A. Brauer, “Efficient focusing polymer waveguide grating couplers,” Electron. Lett., vol. 33, no. 7, pp. 623–624, 1997.

Buckley, S.

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett., vol. 98, no. 26, 2011, Art. no. .

Byer, R. L.

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B, vol. 14, no. 4, pp. 1693–1706, 1976.

Chang, D. E.

A. González-Tudela, C.-L. Hung, D. E. Chang, J. I. Cirac, and H. J. Kimble, “Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals,” Nature Photon., vol. 9, no. 5, pp. 320–325, 2015.

Chang, R. P.

G. Smolinsky, R. P. Chang, and T. M. Mayer, “Plasma etching of III–V compound semiconductor materials and their oxides,” J. Vac. Sci. Technol., vol. 18, no. 1, pp. 12–16, 1981.

Chen, E. H.

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct., Fundam. Appl., vol. 15, pp. 130–136, 2015.

Cheng, K. Y.

J. H. Epple, C. Sanchez, T. Chung, K. Y. Cheng, and K. C. Hsieh, “Dry etching of GaP with emphasis on selective etching over AlGaP,” J. Vac. Sci. Technol. B, Microelectron. Nanom. Struct. Process. Meas. Phenom., vol. 20, no. 6, pp. 2252–2255, 2002.

Choy, M. M.

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B, vol. 14, no. 4, pp. 1693–1706, 1976.

Chung, T.

J. H. Epple, C. Sanchez, T. Chung, K. Y. Cheng, and K. C. Hsieh, “Dry etching of GaP with emphasis on selective etching over AlGaP,” J. Vac. Sci. Technol. B, Microelectron. Nanom. Struct. Process. Meas. Phenom., vol. 20, no. 6, pp. 2252–2255, 2002.

Cirac, J. I.

A. González-Tudela, C.-L. Hung, D. E. Chang, J. I. Cirac, and H. J. Kimble, “Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals,” Nature Photon., vol. 9, no. 5, pp. 320–325, 2015.

Curic, D.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. Dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, no. 3, 2016, Art. no. .

Czornomaz, L.

L. Czornomaz et al., “Scalability of ultra-thin-body and BOX InGaAs MOSFETs on silicon,” in Proc. Eur. Solid-State Device Res. Conf., Bucharest, Romania, 2013, pp. 143–146.

Dave, U. D.

Donnelly, V. M.

D. L. Flamm and V. M. Donnelly, “The design of plasma etchants,” Plasma Chem. Plasma Process., vol. 1, no. 4, pp. 317–363, 1981.

Dos Santos, L. F.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. Dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, no. 3, 2016, Art. no. .

Drechsler, U.

Ducci, S.

Emmer, H.

H. Emmer et al., “Fabrication of single crystal gallium phosphide thin films on glass,” Sci. Rep., vol. 7, no. 1, 2017, Art. no. .

Englund, D.

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct., Fundam. Appl., vol. 15, pp. 130–136, 2015.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett., vol. 100, no. 23, 2012, Art. no. .

Epple, J. H.

J. H. Epple, C. Sanchez, T. Chung, K. Y. Cheng, and K. C. Hsieh, “Dry etching of GaP with emphasis on selective etching over AlGaP,” J. Vac. Sci. Technol. B, Microelectron. Nanom. Struct. Process. Meas. Phenom., vol. 20, no. 6, pp. 2252–2255, 2002.

Faraon, A.

K. Rivoire, A. Faraon, and J. Vučković, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett., vol. 93, no. 6, 2008, Art. no. .

Favero, I.

Fisch, M.

C. Santori, P. E. Barclay, K.-M. C. Fu, R. G. Beausoleil, S. Spillan, and M. Fisch, “Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond,” Nanotechnology, vol. 21, no. 27, 2010, Art. no. .

Flamm, D. L.

D. L. Flamm and V. M. Donnelly, “The design of plasma etchants,” Plasma Chem. Plasma Process., vol. 1, no. 4, pp. 317–363, 1981.

Fu, K. M. C.

N. Thomas, R. J. Barbour, Y. C. Song, M. L. Lee, and K. M. C. Fu, “Waveguide-integrated single-crystalline GaP resonators on diamond,” Opt. Express, vol. 22, no. 11, pp. 13555–13564, 2014.

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett., vol. 95, no. 19, 2009, Art. no. .

Fu, K.-M.

P. E. Barclay, K.-M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Optics, vol. 17, no. 12, pp. 9588–9601, 2009.

Fu, K.-M. C.

C. Santori, P. E. Barclay, K.-M. C. Fu, R. G. Beausoleil, S. Spillan, and M. Fisch, “Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond,” Nanotechnology, vol. 21, no. 27, 2010, Art. no. .

Gan, X.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett., vol. 100, no. 23, 2012, Art. no. .

Geskus, D.

N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, “Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity,” Opt. Express, vol. 24, no. 15, 2016, Art. no. .

González-Tudela, A.

A. González-Tudela, C.-L. Hung, D. E. Chang, J. I. Cirac, and H. J. Kimble, “Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals,” Nature Photon., vol. 9, no. 5, pp. 320–325, 2015.

Gould, M.

M. Gouldet al., “Large-scale GaP-on-diamond integrated photonics platform for NV center-based quantum information,” J. Opt. Soc. Amer. B, vol. 33, no. 3, pp. B35–B42, 2016.

Guo, X.

Hatami, F.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett., vol. 100, no. 23, 2012, Art. no. .

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett., vol. 98, no. 26, 2011, Art. no. .

K. Rivoire, Z. Lin, F. Hatami, and J. Vučković, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett., vol. 97, no. 4, 2010, Art. no. .

G. Shambat, K. Rivoire, J. Lu, F. Hatami, and J. Vučković, “Tunable-wavelength second harmonic generation from GaP photonic crystal cavities coupled to fiber tapers,” Opt. Express, vol. 18, no. 12, pp. 12176–12184, 2010.

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express, vol. 17, no. 25, pp. 22609–22615, 2009.

Hofrichter, J.

Hong, J.

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, and S. J. Pearton, “Cl2-based dry etching of GaAs, AIGaAs, and GaP,” J. Electrochem. Soc., vol. 143, no. 6, pp. 2010–2014, 2010.

Howard, A. J.

R. J. Shul, A. J. Howard, C. B. Vartuli, P. A. Barnes, and W. Seng, “Temperature dependent electron cyclotron resonance etching of InP, GaP, and GaAs,” J. Vac. Sci. Technol. A, Vac., Surf., Film, vol. 14, no. 3, pp. 1102–1106, 1996.

Hryciw, A. C.

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett., vol. 104, no. 14, 2014, Art. no. .

Hsieh, K. C.

J. H. Epple, C. Sanchez, T. Chung, K. Y. Cheng, and K. C. Hsieh, “Dry etching of GaP with emphasis on selective etching over AlGaP,” J. Vac. Sci. Technol. B, Microelectron. Nanom. Struct. Process. Meas. Phenom., vol. 20, no. 6, pp. 2252–2255, 2002.

Hung, C.-L.

A. González-Tudela, C.-L. Hung, D. E. Chang, J. I. Cirac, and H. J. Kimble, “Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals,” Nature Photon., vol. 9, no. 5, pp. 320–325, 2015.

Ismail, N.

N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, “Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity,” Opt. Express, vol. 24, no. 15, 2016, Art. no. .

Ito, R.

N. Ogasawara, R. Ito, and H. Rokukawa, “Second harmonic generation in an AlGaAs double heterostructure laser,” Jpn. J. Appl. Phys.,vol. 26, no. 8, pp. 1386–1387, 1987.

Jansen, H.

H. Jansenet al., “RIE lag in high aspect ratio trench etching of silicon,” Microelectron. Eng., vol. 35, nos. 1–4, pp. 45–50, 1997.

Jayakumar, H.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. Dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, no. 3, 2016, Art. no. .

Kimble, H. J.

A. González-Tudela, C.-L. Hung, D. E. Chang, J. I. Cirac, and H. J. Kimble, “Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals,” Nature Photon., vol. 9, no. 5, pp. 320–325, 2015.

Kley, E.-B.

R. Waldhäusl, B. Schnabel, E.-B. Kley, and A. Brauer, “Efficient focusing polymer waveguide grating couplers,” Electron. Lett., vol. 33, no. 7, pp. 623–624, 1997.

Kores, C. C.

N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, “Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity,” Opt. Express, vol. 24, no. 15, 2016, Art. no. .

Kymissis, I.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett., vol. 100, no. 23, 2012, Art. no. .

Lake, D. P.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. Dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, no. 3, 2016, Art. no. .

Lambers, E.

S. Pearton, J. Lee, E. Lambers, and C. Abernathy, “Comparison of dry etching techniques for III‐V semiconductors in CH4/H2/Ar plasmas,” J. Electrochem. Soc., vol. 143, no. 2, pp. 752–758, 1996.

Lambers, E. S.

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, and S. J. Pearton, “Cl2-based dry etching of GaAs, AIGaAs, and GaP,” J. Electrochem. Soc., vol. 143, no. 6, pp. 2010–2014, 2010.

Lee, J.

S. Pearton, J. Lee, E. Lambers, and C. Abernathy, “Comparison of dry etching techniques for III‐V semiconductors in CH4/H2/Ar plasmas,” J. Electrochem. Soc., vol. 143, no. 2, pp. 752–758, 1996.

Lee, J. W.

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, and S. J. Pearton, “Cl2-based dry etching of GaAs, AIGaAs, and GaP,” J. Electrochem. Soc., vol. 143, no. 6, pp. 2010–2014, 2010.

J. W. Leeet al., “Plasma etching of III-V semiconductors in BCl3 chemistries: Part I: GaAs and related compounds,” Plasma Chem. Plasma Process., vol. 17, no. 2, pp. 155–167, 1997.

J. W. Lee, C. J. Santana, C. R. Abernathy, S. J. Pearton, and F. Ren, “Wet chemical etch solutions for AlxGa1-xP,” J. Electrochem. Soc., vol. 143, no. 1, pp. L1–L3, 1996.

Lee, M. L.

Lemaître, A.

Leo, G.

Li, L.

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct., Fundam. Appl., vol. 15, pp. 130–136, 2015.

Lin, Z.

K. Rivoire, Z. Lin, F. Hatami, and J. Vučković, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett., vol. 97, no. 4, 2010, Art. no. .

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express, vol. 17, no. 25, pp. 22609–22615, 2009.

Lister, K.

Lu, J.

Mariani, S.

Masselink, W. T.

Matthews, J. W.

J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations,” J. Cryst. Growth, vol. 27, pp. 118–125, 1974.

Mayer, T. M.

G. Smolinsky, R. P. Chang, and T. M. Mayer, “Plasma etching of III–V compound semiconductor materials and their oxides,” J. Vac. Sci. Technol., vol. 18, no. 1, pp. 12–16, 1981.

Mekis, A.

A. Mekis et al., “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 3, pp. 597–608, 2011.

Mitchell, M.

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. Dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, no. 3, 2016, Art. no. .

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett., vol. 104, no. 14, 2014, Art. no. .

Ogasawara, N.

N. Ogasawara, R. Ito, and H. Rokukawa, “Second harmonic generation in an AlGaAs double heterostructure laser,” Jpn. J. Appl. Phys.,vol. 26, no. 8, pp. 1386–1387, 1987.

Ottaviano, L.

M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica, vol. 3, no. 8, pp. 8–11, 2016.

L. Ottaviano, M. Pu, E. Semenova, and K. Yvind, “Low-loss high-confinement waveguides and microring resonators in AlGaAs-on-insulator,” Opt. Lett., vol. 41, no. 17, pp. 3996–3998, 2016.

Pearton, S.

S. Pearton, J. Lee, E. Lambers, and C. Abernathy, “Comparison of dry etching techniques for III‐V semiconductors in CH4/H2/Ar plasmas,” J. Electrochem. Soc., vol. 143, no. 2, pp. 752–758, 1996.

Pearton, S. J.

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, and S. J. Pearton, “Cl2-based dry etching of GaAs, AIGaAs, and GaP,” J. Electrochem. Soc., vol. 143, no. 6, pp. 2010–2014, 2010.

J. W. Lee, C. J. Santana, C. R. Abernathy, S. J. Pearton, and F. Ren, “Wet chemical etch solutions for AlxGa1-xP,” J. Electrochem. Soc., vol. 143, no. 1, pp. L1–L3, 1996.

S. J. Pearton et al., “High microwave power electron cyclotron resonance etching of III–V semiconductors in CH4/H2/Ar,” J. Vac. Sci. Technol. B, Nanotechnol. Microelectron., Mater. Process. Meas. Phenom., vol. 14, no. 1, p. 118, 1996.

S. J. Peartonet al., “Dry etching characteristics of III-V semiconductors in microwave BCl3 discharges,” Plasma Chem. Plasma Process., vol. 13, no. 2, pp. 311–332, 1993.

Pervez, N.

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett., vol. 100, no. 23, 2012, Art. no. .

Pollnau, M.

N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, “Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity,” Opt. Express, vol. 24, no. 15, 2016, Art. no. .

Pu, M.

M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica, vol. 3, no. 8, pp. 8–11, 2016.

L. Ottaviano, M. Pu, E. Semenova, and K. Yvind, “Low-loss high-confinement waveguides and microring resonators in AlGaAs-on-insulator,” Opt. Lett., vol. 41, no. 17, pp. 3996–3998, 2016.

Ren, F.

J. W. Lee, C. J. Santana, C. R. Abernathy, S. J. Pearton, and F. Ren, “Wet chemical etch solutions for AlxGa1-xP,” J. Electrochem. Soc., vol. 143, no. 1, pp. L1–L3, 1996.

Ricci, V.

Y. Ueno, V. Ricci, and G. I. Stegeman, “Second-order susceptibility of Ga0.5In0.5P crystals at 1.5 μm and their feasibility for waveguide quasi-phase matching,” J. Opt. Soc. Amer. B, vol. 14, no. 6, pp. 1428–1436, 1997.

Riedinger, R.

R. Riedingeret al., “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature, vol. 530, no. 7590, pp. 313–316, 2016.

Rivoire, K.

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett., vol. 98, no. 26, 2011, Art. no. .

K. Rivoire, Z. Lin, F. Hatami, and J. Vučković, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett., vol. 97, no. 4, 2010, Art. no. .

G. Shambat, K. Rivoire, J. Lu, F. Hatami, and J. Vučković, “Tunable-wavelength second harmonic generation from GaP photonic crystal cavities coupled to fiber tapers,” Opt. Express, vol. 18, no. 12, pp. 12176–12184, 2010.

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express, vol. 17, no. 25, pp. 22609–22615, 2009.

K. Rivoireet al., “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett., vol. 95, no. 12, 2009, Art. no. .

K. Rivoire, A. Faraon, and J. Vučković, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett., vol. 93, no. 6, 2008, Art. no. .

Rokukawa, H.

N. Ogasawara, R. Ito, and H. Rokukawa, “Second harmonic generation in an AlGaAs double heterostructure laser,” Jpn. J. Appl. Phys.,vol. 26, no. 8, pp. 1386–1387, 1987.

Rothuizen, H.

Saleh, M. C.

B. E. A. Teich and M. C. Saleh, “Nonlinear optics,” in Fundamentals of Photonics. New York, NY, USA: Wiley, 1992, pp. 873–917.

Sanchez, C.

J. H. Epple, C. Sanchez, T. Chung, K. Y. Cheng, and K. C. Hsieh, “Dry etching of GaP with emphasis on selective etching over AlGaP,” J. Vac. Sci. Technol. B, Microelectron. Nanom. Struct. Process. Meas. Phenom., vol. 20, no. 6, pp. 2252–2255, 2002.

Santana, C. J.

J. W. Lee, C. J. Santana, C. R. Abernathy, S. J. Pearton, and F. Ren, “Wet chemical etch solutions for AlxGa1-xP,” J. Electrochem. Soc., vol. 143, no. 1, pp. L1–L3, 1996.

Santori, C.

C. Santori, P. E. Barclay, K.-M. C. Fu, R. G. Beausoleil, S. Spillan, and M. Fisch, “Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond,” Nanotechnology, vol. 21, no. 27, 2010, Art. no. .

P. E. Barclay, K.-M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Optics, vol. 17, no. 12, pp. 9588–9601, 2009.

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett., vol. 95, no. 19, 2009, Art. no. .

Schnabel, B.

R. Waldhäusl, B. Schnabel, E.-B. Kley, and A. Brauer, “Efficient focusing polymer waveguide grating couplers,” Electron. Lett., vol. 33, no. 7, pp. 623–624, 1997.

Schneider, K.

Schröder, T.

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct., Fundam. Appl., vol. 15, pp. 130–136, 2015.

Schubert, E. F.

E. F. Schubert, “History of light-emitting diodes” in Light-Emitting Diodes, 2nd ed.Cambridge, U.K.: Cambridge Univ. Press, 2006, pp. 1–26.

Seidler, P.

Semenova, E.

M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica, vol. 3, no. 8, pp. 8–11, 2016.

L. Ottaviano, M. Pu, E. Semenova, and K. Yvind, “Low-loss high-confinement waveguides and microring resonators in AlGaAs-on-insulator,” Opt. Lett., vol. 41, no. 17, pp. 3996–3998, 2016.

Seng, W.

R. J. Shul, A. J. Howard, C. B. Vartuli, P. A. Barnes, and W. Seng, “Temperature dependent electron cyclotron resonance etching of InP, GaP, and GaAs,” J. Vac. Sci. Technol. A, Vac., Surf., Film, vol. 14, no. 3, pp. 1102–1106, 1996.

Shambat, G.

Shul, R. J.

R. J. Shulet al., “High-density plasma etching of compound semiconductors,” J. Vac. Sci. Technol. A, Vac., Surf., Film, vol. 15, no. 3, pp. 633–637, 1997.

R. J. Shul, A. J. Howard, C. B. Vartuli, P. A. Barnes, and W. Seng, “Temperature dependent electron cyclotron resonance etching of InP, GaP, and GaAs,” J. Vac. Sci. Technol. A, Vac., Surf., Film, vol. 14, no. 3, pp. 1102–1106, 1996.

Smolinsky, G.

G. Smolinsky, R. P. Chang, and T. M. Mayer, “Plasma etching of III–V compound semiconductor materials and their oxides,” J. Vac. Sci. Technol., vol. 18, no. 1, pp. 12–16, 1981.

Song, Y. C.

Spillan, S.

C. Santori, P. E. Barclay, K.-M. C. Fu, R. G. Beausoleil, S. Spillan, and M. Fisch, “Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond,” Nanotechnology, vol. 21, no. 27, 2010, Art. no. .

Stegeman, G. I.

Y. Ueno, V. Ricci, and G. I. Stegeman, “Second-order susceptibility of Ga0.5In0.5P crystals at 1.5 μm and their feasibility for waveguide quasi-phase matching,” J. Opt. Soc. Amer. B, vol. 14, no. 6, pp. 1428–1436, 1997.

Stöferle, T.

Tang, H.

Teich, B. E. A.

B. E. A. Teich and M. C. Saleh, “Nonlinear optics,” in Fundamentals of Photonics. New York, NY, USA: Wiley, 1992, pp. 873–917.

Thomas, N.

Ueno, Y.

Y. Ueno, V. Ricci, and G. I. Stegeman, “Second-order susceptibility of Ga0.5In0.5P crystals at 1.5 μm and their feasibility for waveguide quasi-phase matching,” J. Opt. Soc. Amer. B, vol. 14, no. 6, pp. 1428–1436, 1997.

Vartuli, C. B.

R. J. Shul, A. J. Howard, C. B. Vartuli, P. A. Barnes, and W. Seng, “Temperature dependent electron cyclotron resonance etching of InP, GaP, and GaAs,” J. Vac. Sci. Technol. A, Vac., Surf., Film, vol. 14, no. 3, pp. 1102–1106, 1996.

Vuckovic, J.

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett., vol. 98, no. 26, 2011, Art. no. .

K. Rivoire, Z. Lin, F. Hatami, and J. Vučković, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett., vol. 97, no. 4, 2010, Art. no. .

G. Shambat, K. Rivoire, J. Lu, F. Hatami, and J. Vučković, “Tunable-wavelength second harmonic generation from GaP photonic crystal cavities coupled to fiber tapers,” Opt. Express, vol. 18, no. 12, pp. 12176–12184, 2010.

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express, vol. 17, no. 25, pp. 22609–22615, 2009.

K. Rivoire, A. Faraon, and J. Vučković, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett., vol. 93, no. 6, 2008, Art. no. .

Waldhäusl, R.

R. Waldhäusl, B. Schnabel, E.-B. Kley, and A. Brauer, “Efficient focusing polymer waveguide grating couplers,” Electron. Lett., vol. 33, no. 7, pp. 623–624, 1997.

Welch, C.

C. Welch, “Nanoscale etching in inductively coupled plasmas,” Oxford Instrum., Oxford, U.K., 2011. [Online]. Available: http://www.oxfordplasma.de/pla_news/wh_paper/OIPT-Nanoscale Etching of ICP Plasmas 2011.pdf. Accessed on: 3, 2017.

Yang, S. H.

S. H. Yang and P. R. Bandaru, “An experimental study of the reactive ion etching (RIE) of GaP using BCl3 plasma processing,” Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol., vol. 143, nos. 1–3, pp. 27–30, 2007.

Yvind, K.

M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica, vol. 3, no. 8, pp. 8–11, 2016.

L. Ottaviano, M. Pu, E. Semenova, and K. Yvind, “Low-loss high-confinement waveguides and microring resonators in AlGaAs-on-insulator,” Opt. Lett., vol. 41, no. 17, pp. 3996–3998, 2016.

Zou, C.

Appl. Phys. Lett. (8)

K. Rivoire, A. Faraon, and J. Vučković, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett., vol. 93, no. 6, 2008, Art. no. .

K. Rivoireet al., “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett., vol. 95, no. 12, 2009, Art. no. .

X. Gan, N. Pervez, I. Kymissis, F. Hatami, and D. Englund, “A high-resolution spectrometer based on a compact planar two dimensional photonic crystal cavity array,” Appl. Phys. Lett., vol. 100, no. 23, 2012, Art. no. .

K. Rivoire, Z. Lin, F. Hatami, and J. Vučković, “Sum-frequency generation in doubly resonant GaP photonic crystal nanocavities,” Appl. Phys. Lett., vol. 97, no. 4, 2010, Art. no. .

M. Mitchell, A. C. Hryciw, and P. E. Barclay, “Cavity optomechanics in gallium phosphide microdisks,” Appl. Phys. Lett., vol. 104, no. 14, 2014, Art. no. .

P. E. Barclay, K. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett., vol. 95, no. 19, 2009, Art. no. .

K. Rivoire, S. Buckley, F. Hatami, and J. Vučković, “Second harmonic generation in GaP photonic crystal waveguides,” Appl. Phys. Lett., vol. 98, no. 26, 2011, Art. no. .

D. P. Lake, M. Mitchell, H. Jayakumar, L. F. Dos Santos, D. Curic, and P. E. Barclay, “Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks,” Appl. Phys. Lett., vol. 108, no. 3, 2016, Art. no. .

Electron. Lett. (1)

R. Waldhäusl, B. Schnabel, E.-B. Kley, and A. Brauer, “Efficient focusing polymer waveguide grating couplers,” Electron. Lett., vol. 33, no. 7, pp. 623–624, 1997.

IEEE J. Sel. Top. Quantum Electron. (1)

A. Mekis et al., “A grating-coupler-enabled CMOS photonics platform,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 3, pp. 597–608, 2011.

J. Appl. Phys. (1)

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys., vol. 36, pp. 1674–1677, 1965.

J. Cryst. Growth (2)

J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers: I. Misfit dislocations,” J. Cryst. Growth, vol. 27, pp. 118–125, 1974.

J. E. Ayers, “The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction,” J. Cryst. Growth, vol. 135, nos. 1–2, pp. 71–77, 1994.

J. Electrochem. Soc. (3)

J. W. Lee, C. J. Santana, C. R. Abernathy, S. J. Pearton, and F. Ren, “Wet chemical etch solutions for AlxGa1-xP,” J. Electrochem. Soc., vol. 143, no. 1, pp. L1–L3, 1996.

S. Pearton, J. Lee, E. Lambers, and C. Abernathy, “Comparison of dry etching techniques for III‐V semiconductors in CH4/H2/Ar plasmas,” J. Electrochem. Soc., vol. 143, no. 2, pp. 752–758, 1996.

J. W. Lee, J. Hong, E. S. Lambers, C. R. Abernathy, and S. J. Pearton, “Cl2-based dry etching of GaAs, AIGaAs, and GaP,” J. Electrochem. Soc., vol. 143, no. 6, pp. 2010–2014, 2010.

J. Opt. Soc. Amer. B (2)

Y. Ueno, V. Ricci, and G. I. Stegeman, “Second-order susceptibility of Ga0.5In0.5P crystals at 1.5 μm and their feasibility for waveguide quasi-phase matching,” J. Opt. Soc. Amer. B, vol. 14, no. 6, pp. 1428–1436, 1997.

M. Gouldet al., “Large-scale GaP-on-diamond integrated photonics platform for NV center-based quantum information,” J. Opt. Soc. Amer. B, vol. 33, no. 3, pp. B35–B42, 2016.

J. Vac. Sci. Technol. (1)

G. Smolinsky, R. P. Chang, and T. M. Mayer, “Plasma etching of III–V compound semiconductor materials and their oxides,” J. Vac. Sci. Technol., vol. 18, no. 1, pp. 12–16, 1981.

J. Vac. Sci. Technol. A, Vac., Surf., Film (2)

R. J. Shulet al., “High-density plasma etching of compound semiconductors,” J. Vac. Sci. Technol. A, Vac., Surf., Film, vol. 15, no. 3, pp. 633–637, 1997.

R. J. Shul, A. J. Howard, C. B. Vartuli, P. A. Barnes, and W. Seng, “Temperature dependent electron cyclotron resonance etching of InP, GaP, and GaAs,” J. Vac. Sci. Technol. A, Vac., Surf., Film, vol. 14, no. 3, pp. 1102–1106, 1996.

J. Vac. Sci. Technol. B, Microelectron. Nanom. Struct. Process. Meas. Phenom. (1)

J. H. Epple, C. Sanchez, T. Chung, K. Y. Cheng, and K. C. Hsieh, “Dry etching of GaP with emphasis on selective etching over AlGaP,” J. Vac. Sci. Technol. B, Microelectron. Nanom. Struct. Process. Meas. Phenom., vol. 20, no. 6, pp. 2252–2255, 2002.

J. Vac. Sci. Technol. B, Nanotechnol. Microelectron., Mater. Process. Meas. Phenom. (2)

P. Seidler, “Optimized process for fabrication of free-standing silicon nanophotonic devices,” J. Vac. Sci. Technol. B, Nanotechnol. Microelectron., Mater. Process. Meas. Phenom., vol. 35, no. 3, 2017, Art. no. .

S. J. Pearton et al., “High microwave power electron cyclotron resonance etching of III–V semiconductors in CH4/H2/Ar,” J. Vac. Sci. Technol. B, Nanotechnol. Microelectron., Mater. Process. Meas. Phenom., vol. 14, no. 1, p. 118, 1996.

Jpn. J. Appl. Phys. (1)

N. Ogasawara, R. Ito, and H. Rokukawa, “Second harmonic generation in an AlGaAs double heterostructure laser,” Jpn. J. Appl. Phys.,vol. 26, no. 8, pp. 1386–1387, 1987.

Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol. (1)

S. H. Yang and P. R. Bandaru, “An experimental study of the reactive ion etching (RIE) of GaP using BCl3 plasma processing,” Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol., vol. 143, nos. 1–3, pp. 27–30, 2007.

Microelectron. Eng. (1)

H. Jansenet al., “RIE lag in high aspect ratio trench etching of silicon,” Microelectron. Eng., vol. 35, nos. 1–4, pp. 45–50, 1997.

Nanotechnology (1)

C. Santori, P. E. Barclay, K.-M. C. Fu, R. G. Beausoleil, S. Spillan, and M. Fisch, “Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond,” Nanotechnology, vol. 21, no. 27, 2010, Art. no. .

Nature (1)

R. Riedingeret al., “Non-classical correlations between single photons and phonons from a mechanical oscillator,” Nature, vol. 530, no. 7590, pp. 313–316, 2016.

Nature Photon. (1)

A. González-Tudela, C.-L. Hung, D. E. Chang, J. I. Cirac, and H. J. Kimble, “Subwavelength vacuum lattices and atom–atom interactions in two-dimensional photonic crystals,” Nature Photon., vol. 9, no. 5, pp. 320–325, 2015.

Opt. Express (7)

N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, “Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity,” Opt. Express, vol. 24, no. 15, 2016, Art. no. .

U. D. Daveet al., “Nonlinear properties of dispersion engineered InGaP photonic wire waveguides in the telecommunication range,” Opt. Express, vol. 23, no. 4, pp. 4650–4657, 2015.

K. Schneider and P. Seidler, “Strong optomechanical coupling in a slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio,” Opt. Express, vol. 24, no. 13, pp. 13850–13865, 2016.

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vučković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express, vol. 17, no. 25, pp. 22609–22615, 2009.

G. Shambat, K. Rivoire, J. Lu, F. Hatami, and J. Vučković, “Tunable-wavelength second harmonic generation from GaP photonic crystal cavities coupled to fiber tapers,” Opt. Express, vol. 18, no. 12, pp. 12176–12184, 2010.

N. Thomas, R. J. Barbour, Y. C. Song, M. L. Lee, and K. M. C. Fu, “Waveguide-integrated single-crystalline GaP resonators on diamond,” Opt. Express, vol. 22, no. 11, pp. 13555–13564, 2014.

P. Seidler, K. Lister, U. Drechsler, H. Rothuizen, J. Hofrichter, and T. Stöferle, “Photonic crystal nanobeam cavities with an ultrahigh quality factor-to-modal volume ratio,” Opt. Express, vol. 21, no. 26, pp. 32468–32483, 2013.

Opt. Lett. (2)

Optica (2)

X. Guo, C. Zou, and H. Tang, “Second-harmonic generation in aluminum nitride microrings with 2500%/ W conversion efficiency,” Optica, vol. 3, no. 10, pp. 1126–1131, 2016.

M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica, vol. 3, no. 8, pp. 8–11, 2016.

Optics (1)

P. E. Barclay, K.-M. Fu, C. Santori, and R. G. Beausoleil, “Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers,” Optics, vol. 17, no. 12, pp. 9588–9601, 2009.

Photon. Nanostruct., Fundam. Appl. (1)

L. Li, T. Schröder, E. H. Chen, H. Bakhru, and D. Englund, “One-dimensional photonic crystal cavities in single-crystal diamond,” Photon. Nanostruct., Fundam. Appl., vol. 15, pp. 130–136, 2015.

Phys. Rev. B (1)

M. M. Choy and R. L. Byer, “Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals,” Phys. Rev. B, vol. 14, no. 4, pp. 1693–1706, 1976.

Plasma Chem. Plasma Process. (3)

J. W. Leeet al., “Plasma etching of III-V semiconductors in BCl3 chemistries: Part I: GaAs and related compounds,” Plasma Chem. Plasma Process., vol. 17, no. 2, pp. 155–167, 1997.

S. J. Peartonet al., “Dry etching characteristics of III-V semiconductors in microwave BCl3 discharges,” Plasma Chem. Plasma Process., vol. 13, no. 2, pp. 311–332, 1993.

D. L. Flamm and V. M. Donnelly, “The design of plasma etchants,” Plasma Chem. Plasma Process., vol. 1, no. 4, pp. 317–363, 1981.

Sci. Rep. (1)

H. Emmer et al., “Fabrication of single crystal gallium phosphide thin films on glass,” Sci. Rep., vol. 7, no. 1, 2017, Art. no. .

Other (5)

E. F. Schubert, “History of light-emitting diodes” in Light-Emitting Diodes, 2nd ed.Cambridge, U.K.: Cambridge Univ. Press, 2006, pp. 1–26.

L. Czornomaz et al., “Scalability of ultra-thin-body and BOX InGaAs MOSFETs on silicon,” in Proc. Eur. Solid-State Device Res. Conf., Bucharest, Romania, 2013, pp. 143–146.

C. Welch, “Nanoscale etching in inductively coupled plasmas,” Oxford Instrum., Oxford, U.K., 2011. [Online]. Available: http://www.oxfordplasma.de/pla_news/wh_paper/OIPT-Nanoscale Etching of ICP Plasmas 2011.pdf. Accessed on: 3, 2017.

B. E. A. Teich and M. C. Saleh, “Nonlinear optics,” in Fundamentals of Photonics. New York, NY, USA: Wiley, 1992, pp. 873–917.

S. Assefa et al., “A 90nm CMOS intergated nanophotonics technology for 25Gbps WDM optical communications applications,” in Proc. IEEE Int. Electron Devices Meeting, San Francisco, CA, USA, 2012, pp. 809–811.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.