Abstract

The creation of high-performance narrow-band filters is of great interest for many radio frequency (RF) signal processing applications. To this end, numerous schemes for electronic, microelectromechanical systems-based, and microwave photonic filters have been demonstrated. Filtering schemes based on microwave photonic systems offer superior flexibility and tunability to traditional RF filters. However, these optical-based filters are typically limited to gigahertz (GHz) widths and often have large RF insertion losses, posing challenges for integration into high-fidelity RF circuits. In this paper, we demonstrate a novel type of microwave filter that combines the attractive features of microwave photonic filters with high-Q phononic signal processing using a photonic–phononic emit–receive process. Through this process, an RF signal, which is encoded on a guided optical wave, is converted into a GHz-frequency acoustic wave, where it is filtered through shaping of acoustic transfer functions before being converted back to the optical domain. In contrast to prior phononic filters that utilize gain or loss based on stimulated Brillouin scattering, optical amplification is not used to mediate signal processing. This emit–receive functionality, realized in an integrated silicon waveguide, produces megahertz-bandwidth bandpass filtering while supporting low RF insertion losses necessary for high dynamic range in a microwave photonic link. We also demonstrate record-high internal efficiency for emit–receive operations of this type, and show that the emit–receive operation is uniquely suitable for the creation of serial filter banks with minimal loss of fidelity. This photonic–phononic emitter–receiver represents a new method for low-distortion signal processing in an integrated all-silicon device.

© 2018 OAPA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightw. Technol., vol. 24, no. 12, pp. 4628–4641, 2006.
  2. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.
  3. V. Urick, K. Williams, and J. McKinney, Fundamentals of Microwave Photonics (Wiley Series in Microwave and Optical Engineering).   Hoboken, NJ, USA: Wiley, 2015.
  4. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics, vol. 1, no. 6, pp. 319–330, 2007.
  5. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightw. Technol., vol. 23, no. 2, pp. 702–723, 2005.
  6. D. Marpaunget al., “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica, vol. 2, no. 2, pp. 76–83, 2015.
  7. R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated Brillouin scattering for microwave signal processing and generation,” Laser Photon. Rev., vol. 8, no. 5, pp. 653–666, 2014.
  8. H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun., vol. 6, 2015, Art. no. .
  9. A. Casas-Bedoya, B. Morrison, M. Pagani, D. Marpaung, and B. J. Eggleton, “Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a silicon nanowire,” Opt. Lett., vol. 40, no. 17, pp. 4154–4157, 2015.
  10. N. Olsson and J. van der Ziel, “Fibre Brillouin amplifier with electronically controlled bandwidth,” Electron. Lett., vol. 22, no. 9, pp. 488–490, 1986.
  11. R. Pantet al., “On-chip stimulated Brillouin scattering,” Opt. Express, vol. 19, no. 9, pp. 8285–8290, 2011.
  12. E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics, vol. 10, no. 7, pp. 463–467, 2016.
  13. E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun., vol. 8, 2017, Art. no. .
  14. B. Morrisonet al., “Compact Brillouin devices through hybrid integration on silicon,” Optica, vol. 4, no. 8, pp. 847–854, 2017.
  15. T. Tanemura, Y. Takushima, and K. Kikuchi, “Narrowband optical filter, with a variable transmission spectrum, using stimulated Brillouin scattering in optical fiber,” Opt. Lett., vol. 27, no. 17, pp. 1552–1554, 2002.
  16. A. Zadok, A. Eyal, and M. Tur, “Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightw. Technol., vol. 25, no. 8, pp. 2168–2174, 2007.
  17. B. Vidal, M. A. Piqueras, and J. Martí, “Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering,” Opt. Lett., vol. 32, no. 1, pp. 23–25, 2007.
  18. W. Zhang and R. Minasian, “Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett., vol. 24, no. 14, pp. 1182–1184, 2012.
  19. X. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett., vol. 10, no. 1, pp. 138–140, 1998.
  20. A. Loayssa, D. Benito, and M. J. Garde, “Optical carrier Brillouin processing of microwave photonic signals,” Opt. Lett., vol. 25, no. 17, pp. 1234–1236, 2000.
  21. J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun., vol. 4, 2013, Art. no. .
  22. M. Merkleinet al., “Widely tunable, low phase noise microwave source based on a photonic chip,” Opt. Lett., vol. 41, no. 20, pp. 4633–4636, 2016.
  23. X. Huang and S. Fan, “Complete all-optical silica fiber isolator via stimulated Brillouin scattering,” J. Lightw. Technol., vol. 29, no. 15, pp. 2267–2275, 2011.
  24. M. S. Kang, A. Butsch, and P. St. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics, vol. 5, no. 9, pp. 549–553, 2011.
  25. J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys., vol. 11, no. 3, pp. 275–280, 2015.
  26. C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun., vol. 6, 2015, Art. no. .
  27. Y. Okawachiet al., “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett., vol. 94, 2005, Art. no. .
  28. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science, vol. 318, no. 5857, pp. 1748–1750, 2007.
  29. P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X, vol. 2, 2012, Art. no. .
  30. H. Shinet al., “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun., vol. 4, 2013, Art. no. .
  31. R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics, vol. 9, no. 3, pp. 199–203, 2015.
  32. R. Van Laer, A. Bazin, B. Kuyken, R. Baets, and D. V. Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys., vol. 17, no. 11, 2015, Art. no. .
  33. N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” arXiv:1705.05813, 2017.
  34. P. Kharel, R. O. Behunin, W. H. Renninger, and P. T. Rakich, “Noise and dynamics in forward Brillouin interactions,” Phys. Rev. A, vol. 93, 2016, Art. no. .
  35. R. Van Laer, C. J. Sarabalis, R. Baets, D. Van Thourhout, and A. H. Safavi-Naeini, “Thermal Brillouin noise observed in silicon optomechanical waveguide,” J. Opt., vol. 19, no. 4, 2017, Art. no. .
  36. J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2x2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express, vol. 17, no. 26, pp. 24 020–24 029.
  37. M. A. Van Campet al., “Demonstration of electrooptic modulation at 2165nm using a silicon Mach-Zehnder interferometer,” Opt. Express, vol. 20, no. 27, pp. 28009–28016, 2012.
  38. A. Ramaswamyet al., “Integrated coherent receivers for high-linearity microwave photonic links,” J. Lightw. Technol., vol. 26, no. 1, pp. 209–216, 2008.
  39. H. Ronget al., “A continuous-wave Raman silicon laser,” Nature, vol. 433, no. 7027, pp. 725–728, 2005.
  40. C. Wolff, R. Van Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys., vol. 18, no. 2, 2016, Art. no. .
  41. L. M. Johnson and H. V. Roussell, “Reduction of intermodulation distortion in interferometric optical modulators,” Opt. Lett., vol. 13, no. 10, pp. 928–930, 1988.
  42. G. E. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Techn., vol. 42, no. 12, pp. 2642–2649, 1994.
  43. W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Techn., vol. 43, no. 9, pp. 2184–2197, 1995.
  44. H. H. Diamandi, Y. London, and A. Zadok, “Opto-mechanical inter-core cross-talk in multi-core fibers,” Optica, vol. 4, no. 3, pp. 289–297, 2017.
  45. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, no. 7040, pp. 325–327, 2005.
  46. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics, vol. 4, no. 8, pp. 518–526, 2010.
  47. L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express, vol. 17, no. 17, pp. 15 248–15 256, 2009.
  48. T. Baehr-Joneset al., “A 25 Gb/s silicon photonics platform,” arXiv:1705.05813, 2012.
  49. X. Xieet al., “High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator,” J. Lightw. Technol., vol. 34, no. 1, pp. 73–78, 2016.

2017 (4)

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun., vol. 8, 2017, Art. no. .

B. Morrisonet al., “Compact Brillouin devices through hybrid integration on silicon,” Optica, vol. 4, no. 8, pp. 847–854, 2017.

R. Van Laer, C. J. Sarabalis, R. Baets, D. Van Thourhout, and A. H. Safavi-Naeini, “Thermal Brillouin noise observed in silicon optomechanical waveguide,” J. Opt., vol. 19, no. 4, 2017, Art. no. .

H. H. Diamandi, Y. London, and A. Zadok, “Opto-mechanical inter-core cross-talk in multi-core fibers,” Optica, vol. 4, no. 3, pp. 289–297, 2017.

2016 (5)

P. Kharel, R. O. Behunin, W. H. Renninger, and P. T. Rakich, “Noise and dynamics in forward Brillouin interactions,” Phys. Rev. A, vol. 93, 2016, Art. no. .

X. Xieet al., “High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator,” J. Lightw. Technol., vol. 34, no. 1, pp. 73–78, 2016.

C. Wolff, R. Van Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys., vol. 18, no. 2, 2016, Art. no. .

M. Merkleinet al., “Widely tunable, low phase noise microwave source based on a photonic chip,” Opt. Lett., vol. 41, no. 20, pp. 4633–4636, 2016.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics, vol. 10, no. 7, pp. 463–467, 2016.

2015 (7)

D. Marpaunget al., “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica, vol. 2, no. 2, pp. 76–83, 2015.

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun., vol. 6, 2015, Art. no. .

A. Casas-Bedoya, B. Morrison, M. Pagani, D. Marpaung, and B. J. Eggleton, “Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a silicon nanowire,” Opt. Lett., vol. 40, no. 17, pp. 4154–4157, 2015.

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys., vol. 11, no. 3, pp. 275–280, 2015.

C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun., vol. 6, 2015, Art. no. .

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics, vol. 9, no. 3, pp. 199–203, 2015.

R. Van Laer, A. Bazin, B. Kuyken, R. Baets, and D. V. Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys., vol. 17, no. 11, 2015, Art. no. .

2014 (1)

R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated Brillouin scattering for microwave signal processing and generation,” Laser Photon. Rev., vol. 8, no. 5, pp. 653–666, 2014.

2013 (3)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun., vol. 4, 2013, Art. no. .

H. Shinet al., “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun., vol. 4, 2013, Art. no. .

2012 (3)

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X, vol. 2, 2012, Art. no. .

M. A. Van Campet al., “Demonstration of electrooptic modulation at 2165nm using a silicon Mach-Zehnder interferometer,” Opt. Express, vol. 20, no. 27, pp. 28009–28016, 2012.

W. Zhang and R. Minasian, “Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett., vol. 24, no. 14, pp. 1182–1184, 2012.

2011 (3)

R. Pantet al., “On-chip stimulated Brillouin scattering,” Opt. Express, vol. 19, no. 9, pp. 8285–8290, 2011.

X. Huang and S. Fan, “Complete all-optical silica fiber isolator via stimulated Brillouin scattering,” J. Lightw. Technol., vol. 29, no. 15, pp. 2267–2275, 2011.

M. S. Kang, A. Butsch, and P. St. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics, vol. 5, no. 9, pp. 549–553, 2011.

2010 (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics, vol. 4, no. 8, pp. 518–526, 2010.

2009 (1)

L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express, vol. 17, no. 17, pp. 15 248–15 256, 2009.

2008 (1)

A. Ramaswamyet al., “Integrated coherent receivers for high-linearity microwave photonic links,” J. Lightw. Technol., vol. 26, no. 1, pp. 209–216, 2008.

2007 (4)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science, vol. 318, no. 5857, pp. 1748–1750, 2007.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics, vol. 1, no. 6, pp. 319–330, 2007.

A. Zadok, A. Eyal, and M. Tur, “Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightw. Technol., vol. 25, no. 8, pp. 2168–2174, 2007.

B. Vidal, M. A. Piqueras, and J. Martí, “Tunable and reconfigurable photonic microwave filter based on stimulated Brillouin scattering,” Opt. Lett., vol. 32, no. 1, pp. 23–25, 2007.

2006 (1)

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightw. Technol., vol. 24, no. 12, pp. 4628–4641, 2006.

2005 (4)

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightw. Technol., vol. 23, no. 2, pp. 702–723, 2005.

Y. Okawachiet al., “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett., vol. 94, 2005, Art. no. .

H. Ronget al., “A continuous-wave Raman silicon laser,” Nature, vol. 433, no. 7027, pp. 725–728, 2005.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, no. 7040, pp. 325–327, 2005.

2002 (1)

2000 (1)

1998 (1)

X. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett., vol. 10, no. 1, pp. 138–140, 1998.

1995 (1)

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Techn., vol. 43, no. 9, pp. 2184–2197, 1995.

1994 (1)

G. E. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Techn., vol. 42, no. 12, pp. 2642–2649, 1994.

1988 (1)

1986 (1)

N. Olsson and J. van der Ziel, “Fibre Brillouin amplifier with electronically controlled bandwidth,” Electron. Lett., vol. 22, no. 9, pp. 488–490, 1986.

Assefa, S.

J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2x2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express, vol. 17, no. 26, pp. 24 020–24 029.

Baehr-Jones, T.

T. Baehr-Joneset al., “A 25 Gb/s silicon photonics platform,” arXiv:1705.05813, 2012.

Baets, R.

R. Van Laer, C. J. Sarabalis, R. Baets, D. Van Thourhout, and A. H. Safavi-Naeini, “Thermal Brillouin noise observed in silicon optomechanical waveguide,” J. Opt., vol. 19, no. 4, 2017, Art. no. .

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics, vol. 9, no. 3, pp. 199–203, 2015.

R. Van Laer, A. Bazin, B. Kuyken, R. Baets, and D. V. Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys., vol. 17, no. 11, 2015, Art. no. .

Bahl, G.

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys., vol. 11, no. 3, pp. 275–280, 2015.

Bazin, A.

R. Van Laer, A. Bazin, B. Kuyken, R. Baets, and D. V. Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys., vol. 17, no. 11, 2015, Art. no. .

Behunin, R. O.

P. Kharel, R. O. Behunin, W. H. Renninger, and P. T. Rakich, “Noise and dynamics in forward Brillouin interactions,” Phys. Rev. A, vol. 93, 2016, Art. no. .

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” arXiv:1705.05813, 2017.

Benito, D.

Betts, G. E.

G. E. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Techn., vol. 42, no. 12, pp. 2642–2649, 1994.

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science, vol. 318, no. 5857, pp. 1748–1750, 2007.

Bridges, W. B.

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Techn., vol. 43, no. 9, pp. 2184–2197, 1995.

Butsch, A.

M. S. Kang, A. Butsch, and P. St. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics, vol. 5, no. 9, pp. 549–553, 2011.

Camacho, R.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X, vol. 2, 2012, Art. no. .

Camp, M. A. Van

Campenhout, J. Van

J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2x2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express, vol. 17, no. 26, pp. 24 020–24 029.

Capmany, J.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics, vol. 1, no. 6, pp. 319–330, 2007.

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightw. Technol., vol. 23, no. 2, pp. 702–723, 2005.

Casas-Bedoya, A.

Chen, L.

L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express, vol. 17, no. 17, pp. 15 248–15 256, 2009.

Cox, J. A.

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun., vol. 6, 2015, Art. no. .

Davids, P.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X, vol. 2, 2012, Art. no. .

Diamandi, H. H.

Dong, C.

C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun., vol. 6, 2015, Art. no. .

Eggleton, B. J.

C. Wolff, R. Van Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys., vol. 18, no. 2, 2016, Art. no. .

A. Casas-Bedoya, B. Morrison, M. Pagani, D. Marpaung, and B. J. Eggleton, “Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a silicon nanowire,” Opt. Lett., vol. 40, no. 17, pp. 4154–4157, 2015.

R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated Brillouin scattering for microwave signal processing and generation,” Laser Photon. Rev., vol. 8, no. 5, pp. 653–666, 2014.

Eyal, A.

A. Zadok, A. Eyal, and M. Tur, “Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightw. Technol., vol. 25, no. 8, pp. 2168–2174, 2007.

Fan, S.

X. Huang and S. Fan, “Complete all-optical silica fiber isolator via stimulated Brillouin scattering,” J. Lightw. Technol., vol. 29, no. 15, pp. 2267–2275, 2011.

Fu, W.

C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun., vol. 6, 2015, Art. no. .

Garde, M. J.

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics, vol. 4, no. 8, pp. 518–526, 2010.

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science, vol. 318, no. 5857, pp. 1748–1750, 2007.

Green, W. M. J.

J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2x2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express, vol. 17, no. 26, pp. 24 020–24 029.

Guo, G.

C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun., vol. 6, 2015, Art. no. .

Han, K.

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys., vol. 11, no. 3, pp. 275–280, 2015.

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

Huang, X.

X. Huang and S. Fan, “Complete all-optical silica fiber isolator via stimulated Brillouin scattering,” J. Lightw. Technol., vol. 29, no. 15, pp. 2267–2275, 2011.

Jarecki, R.

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun., vol. 6, 2015, Art. no. .

Johnson, L. M.

Kabakova, I. V.

R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated Brillouin scattering for microwave signal processing and generation,” Laser Photon. Rev., vol. 8, no. 5, pp. 653–666, 2014.

Kang, M. S.

M. S. Kang, A. Butsch, and P. St. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics, vol. 5, no. 9, pp. 549–553, 2011.

Kharel, P.

P. Kharel, R. O. Behunin, W. H. Renninger, and P. T. Rakich, “Noise and dynamics in forward Brillouin interactions,” Phys. Rev. A, vol. 93, 2016, Art. no. .

Kikuchi, K.

Kim, J.

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys., vol. 11, no. 3, pp. 275–280, 2015.

Kittlaus, E. A.

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun., vol. 8, 2017, Art. no. .

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics, vol. 10, no. 7, pp. 463–467, 2016.

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” arXiv:1705.05813, 2017.

Kuyken, B.

R. Van Laer, A. Bazin, B. Kuyken, R. Baets, and D. V. Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys., vol. 17, no. 11, 2015, Art. no. .

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics, vol. 9, no. 3, pp. 199–203, 2015.

Kuzyk, M. C.

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys., vol. 11, no. 3, pp. 275–280, 2015.

Laer, R. Van

R. Van Laer, C. J. Sarabalis, R. Baets, D. Van Thourhout, and A. H. Safavi-Naeini, “Thermal Brillouin noise observed in silicon optomechanical waveguide,” J. Opt., vol. 19, no. 4, 2017, Art. no. .

C. Wolff, R. Van Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys., vol. 18, no. 2, 2016, Art. no. .

R. Van Laer, A. Bazin, B. Kuyken, R. Baets, and D. V. Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys., vol. 17, no. 11, 2015, Art. no. .

Lee, H.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun., vol. 4, 2013, Art. no. .

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

Li, J.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun., vol. 4, 2013, Art. no. .

Lipson, M.

L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express, vol. 17, no. 17, pp. 15 248–15 256, 2009.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, no. 7040, pp. 325–327, 2005.

Loayssa, A.

London, Y.

Manipatruni, S.

L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express, vol. 17, no. 17, pp. 15 248–15 256, 2009.

Marpaung, D.

D. Marpaunget al., “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica, vol. 2, no. 2, pp. 76–83, 2015.

A. Casas-Bedoya, B. Morrison, M. Pagani, D. Marpaung, and B. J. Eggleton, “Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a silicon nanowire,” Opt. Lett., vol. 40, no. 17, pp. 4154–4157, 2015.

R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated Brillouin scattering for microwave signal processing and generation,” Laser Photon. Rev., vol. 8, no. 5, pp. 653–666, 2014.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

Martí, J.

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics, vol. 4, no. 8, pp. 518–526, 2010.

McKinney, J.

V. Urick, K. Williams, and J. McKinney, Fundamentals of Microwave Photonics (Wiley Series in Microwave and Optical Engineering).   Hoboken, NJ, USA: Wiley, 2015.

Merklein, M.

Minasian, R.

W. Zhang and R. Minasian, “Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett., vol. 24, no. 14, pp. 1182–1184, 2012.

Morrison, B.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics, vol. 1, no. 6, pp. 319–330, 2007.

Okawachi, Y.

Y. Okawachiet al., “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett., vol. 94, 2005, Art. no. .

Olsson, N.

N. Olsson and J. van der Ziel, “Fibre Brillouin amplifier with electronically controlled bandwidth,” Electron. Lett., vol. 22, no. 9, pp. 488–490, 1986.

Ortega, B.

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightw. Technol., vol. 23, no. 2, pp. 702–723, 2005.

Otterstrom, N. T.

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun., vol. 8, 2017, Art. no. .

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” arXiv:1705.05813, 2017.

Pagani, M.

Pant, R.

R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated Brillouin scattering for microwave signal processing and generation,” Laser Photon. Rev., vol. 8, no. 5, pp. 653–666, 2014.

R. Pantet al., “On-chip stimulated Brillouin scattering,” Opt. Express, vol. 19, no. 9, pp. 8285–8290, 2011.

Pastor, D.

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightw. Technol., vol. 23, no. 2, pp. 702–723, 2005.

Piqueras, M. A.

Poulton, C. G.

C. Wolff, R. Van Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys., vol. 18, no. 2, 2016, Art. no. .

R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated Brillouin scattering for microwave signal processing and generation,” Laser Photon. Rev., vol. 8, no. 5, pp. 653–666, 2014.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, no. 7040, pp. 325–327, 2005.

Preston, K.

L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express, vol. 17, no. 17, pp. 15 248–15 256, 2009.

Rakich, P. T.

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun., vol. 8, 2017, Art. no. .

P. Kharel, R. O. Behunin, W. H. Renninger, and P. T. Rakich, “Noise and dynamics in forward Brillouin interactions,” Phys. Rev. A, vol. 93, 2016, Art. no. .

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics, vol. 10, no. 7, pp. 463–467, 2016.

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun., vol. 6, 2015, Art. no. .

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X, vol. 2, 2012, Art. no. .

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” arXiv:1705.05813, 2017.

Ramaswamy, A.

A. Ramaswamyet al., “Integrated coherent receivers for high-linearity microwave photonic links,” J. Lightw. Technol., vol. 26, no. 1, pp. 209–216, 2008.

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics, vol. 4, no. 8, pp. 518–526, 2010.

Reinke, C.

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X, vol. 2, 2012, Art. no. .

Renninger, W. H.

P. Kharel, R. O. Behunin, W. H. Renninger, and P. T. Rakich, “Noise and dynamics in forward Brillouin interactions,” Phys. Rev. A, vol. 93, 2016, Art. no. .

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

Rong, H.

H. Ronget al., “A continuous-wave Raman silicon laser,” Nature, vol. 433, no. 7027, pp. 725–728, 2005.

Roussell, H. V.

Russell, P. St. J.

M. S. Kang, A. Butsch, and P. St. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics, vol. 5, no. 9, pp. 549–553, 2011.

Safavi-Naeini, A. H.

R. Van Laer, C. J. Sarabalis, R. Baets, D. Van Thourhout, and A. H. Safavi-Naeini, “Thermal Brillouin noise observed in silicon optomechanical waveguide,” J. Opt., vol. 19, no. 4, 2017, Art. no. .

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightw. Technol., vol. 23, no. 2, pp. 702–723, 2005.

Sarabalis, C. J.

R. Van Laer, C. J. Sarabalis, R. Baets, D. Van Thourhout, and A. H. Safavi-Naeini, “Thermal Brillouin noise observed in silicon optomechanical waveguide,” J. Opt., vol. 19, no. 4, 2017, Art. no. .

Schaffner, J. H.

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Techn., vol. 43, no. 9, pp. 2184–2197, 1995.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, no. 7040, pp. 325–327, 2005.

Seeds, A. J.

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightw. Technol., vol. 24, no. 12, pp. 4628–4641, 2006.

Shen, Z.

C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun., vol. 6, 2015, Art. no. .

Shin, H.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics, vol. 10, no. 7, pp. 463–467, 2016.

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun., vol. 6, 2015, Art. no. .

H. Shinet al., “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun., vol. 4, 2013, Art. no. .

Starbuck, A.

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun., vol. 6, 2015, Art. no. .

Steel, M. J.

C. Wolff, R. Van Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys., vol. 18, no. 2, 2016, Art. no. .

Takushima, Y.

Tanemura, T.

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics, vol. 4, no. 8, pp. 518–526, 2010.

Thourhout, D. V.

R. Van Laer, A. Bazin, B. Kuyken, R. Baets, and D. V. Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys., vol. 17, no. 11, 2015, Art. no. .

Thourhout, D. Van

R. Van Laer, C. J. Sarabalis, R. Baets, D. Van Thourhout, and A. H. Safavi-Naeini, “Thermal Brillouin noise observed in silicon optomechanical waveguide,” J. Opt., vol. 19, no. 4, 2017, Art. no. .

Tur, M.

A. Zadok, A. Eyal, and M. Tur, “Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightw. Technol., vol. 25, no. 8, pp. 2168–2174, 2007.

Urick, V.

V. Urick, K. Williams, and J. McKinney, Fundamentals of Microwave Photonics (Wiley Series in Microwave and Optical Engineering).   Hoboken, NJ, USA: Wiley, 2015.

Vahala, K. J.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun., vol. 4, 2013, Art. no. .

van der Ziel, J.

N. Olsson and J. van der Ziel, “Fibre Brillouin amplifier with electronically controlled bandwidth,” Electron. Lett., vol. 22, no. 9, pp. 488–490, 1986.

Van Laer, R.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics, vol. 9, no. 3, pp. 199–203, 2015.

Van Thourhout, D.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics, vol. 9, no. 3, pp. 199–203, 2015.

Vidal, B.

Vlasov, Y. A.

J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2x2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express, vol. 17, no. 26, pp. 24 020–24 029.

Wang, H.

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys., vol. 11, no. 3, pp. 275–280, 2015.

Wang, Z.

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun., vol. 6, 2015, Art. no. .

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X, vol. 2, 2012, Art. no. .

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” arXiv:1705.05813, 2017.

Williams, K.

V. Urick, K. Williams, and J. McKinney, Fundamentals of Microwave Photonics (Wiley Series in Microwave and Optical Engineering).   Hoboken, NJ, USA: Wiley, 2015.

Williams, K. J.

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightw. Technol., vol. 24, no. 12, pp. 4628–4641, 2006.

Wolff, C.

C. Wolff, R. Van Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys., vol. 18, no. 2, 2016, Art. no. .

Xie, X.

X. Xieet al., “High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator,” J. Lightw. Technol., vol. 34, no. 1, pp. 73–78, 2016.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, no. 7040, pp. 325–327, 2005.

Yao, X.

X. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett., vol. 10, no. 1, pp. 138–140, 1998.

Zadok, A.

H. H. Diamandi, Y. London, and A. Zadok, “Opto-mechanical inter-core cross-talk in multi-core fibers,” Optica, vol. 4, no. 3, pp. 289–297, 2017.

A. Zadok, A. Eyal, and M. Tur, “Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightw. Technol., vol. 25, no. 8, pp. 2168–2174, 2007.

Zhang, W.

W. Zhang and R. Minasian, “Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett., vol. 24, no. 14, pp. 1182–1184, 2012.

Zhang, Y.

C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun., vol. 6, 2015, Art. no. .

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science, vol. 318, no. 5857, pp. 1748–1750, 2007.

Zou, C.

C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun., vol. 6, 2015, Art. no. .

Electron. Lett. (1)

N. Olsson and J. van der Ziel, “Fibre Brillouin amplifier with electronically controlled bandwidth,” Electron. Lett., vol. 22, no. 9, pp. 488–490, 1986.

IEEE Photon. Technol. Lett. (2)

W. Zhang and R. Minasian, “Ultrawide tunable microwave photonic notch filter based on stimulated Brillouin scattering,” IEEE Photon. Technol. Lett., vol. 24, no. 14, pp. 1182–1184, 2012.

X. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol. Lett., vol. 10, no. 1, pp. 138–140, 1998.

IEEE Trans. Microw. Theory Techn. (2)

G. E. Betts, “Linearized modulator for suboctave-bandpass optical analog links,” IEEE Trans. Microw. Theory Techn., vol. 42, no. 12, pp. 2642–2649, 1994.

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Techn., vol. 43, no. 9, pp. 2184–2197, 1995.

J. Lightw. Technol. (6)

X. Xieet al., “High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator,” J. Lightw. Technol., vol. 34, no. 1, pp. 73–78, 2016.

A. Zadok, A. Eyal, and M. Tur, “Gigahertz-wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightw. Technol., vol. 25, no. 8, pp. 2168–2174, 2007.

A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightw. Technol., vol. 24, no. 12, pp. 4628–4641, 2006.

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightw. Technol., vol. 23, no. 2, pp. 702–723, 2005.

X. Huang and S. Fan, “Complete all-optical silica fiber isolator via stimulated Brillouin scattering,” J. Lightw. Technol., vol. 29, no. 15, pp. 2267–2275, 2011.

A. Ramaswamyet al., “Integrated coherent receivers for high-linearity microwave photonic links,” J. Lightw. Technol., vol. 26, no. 1, pp. 209–216, 2008.

J. Opt. (1)

R. Van Laer, C. J. Sarabalis, R. Baets, D. Van Thourhout, and A. H. Safavi-Naeini, “Thermal Brillouin noise observed in silicon optomechanical waveguide,” J. Opt., vol. 19, no. 4, 2017, Art. no. .

Laser Photon. Rev. (2)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev., vol. 7, no. 4, pp. 506–538, 2013.

R. Pant, D. Marpaung, I. V. Kabakova, B. Morrison, C. G. Poulton, and B. J. Eggleton, “On-chip stimulated Brillouin scattering for microwave signal processing and generation,” Laser Photon. Rev., vol. 8, no. 5, pp. 653–666, 2014.

Nat. Commun. (5)

H. Shin, J. A. Cox, R. Jarecki, A. Starbuck, Z. Wang, and P. T. Rakich, “Control of coherent information via on-chip photonic-phononic emitter-receivers,” Nat. Commun., vol. 6, 2015, Art. no. .

E. A. Kittlaus, N. T. Otterstrom, and P. T. Rakich, “On-chip inter-modal Brillouin scattering,” Nat. Commun., vol. 8, 2017, Art. no. .

H. Shinet al., “Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides,” Nat. Commun., vol. 4, 2013, Art. no. .

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun., vol. 4, 2013, Art. no. .

C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun., vol. 6, 2015, Art. no. .

Nat. Photonics (5)

M. S. Kang, A. Butsch, and P. St. J. Russell, “Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre,” Nat. Photonics, vol. 5, no. 9, pp. 549–553, 2011.

R. Van Laer, B. Kuyken, D. Van Thourhout, and R. Baets, “Interaction between light and highly confined hypersound in a silicon photonic nanowire,” Nat. Photonics, vol. 9, no. 3, pp. 199–203, 2015.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics, vol. 1, no. 6, pp. 319–330, 2007.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics, vol. 10, no. 7, pp. 463–467, 2016.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics, vol. 4, no. 8, pp. 518–526, 2010.

Nat. Phys. (1)

J. Kim, M. C. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys., vol. 11, no. 3, pp. 275–280, 2015.

Nature (2)

H. Ronget al., “A continuous-wave Raman silicon laser,” Nature, vol. 433, no. 7027, pp. 725–728, 2005.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, no. 7040, pp. 325–327, 2005.

New J. Phys. (2)

C. Wolff, R. Van Laer, M. J. Steel, B. J. Eggleton, and C. G. Poulton, “Brillouin resonance broadening due to structural variations in nanoscale waveguides,” New J. Phys., vol. 18, no. 2, 2016, Art. no. .

R. Van Laer, A. Bazin, B. Kuyken, R. Baets, and D. V. Thourhout, “Net on-chip Brillouin gain based on suspended silicon nanowires,” New J. Phys., vol. 17, no. 11, 2015, Art. no. .

Opt. Express (4)

R. Pantet al., “On-chip stimulated Brillouin scattering,” Opt. Express, vol. 19, no. 9, pp. 8285–8290, 2011.

L. Chen, K. Preston, S. Manipatruni, and M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express, vol. 17, no. 17, pp. 15 248–15 256, 2009.

J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2x2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express, vol. 17, no. 26, pp. 24 020–24 029.

M. A. Van Campet al., “Demonstration of electrooptic modulation at 2165nm using a silicon Mach-Zehnder interferometer,” Opt. Express, vol. 20, no. 27, pp. 28009–28016, 2012.

Opt. Lett. (6)

Optica (3)

Phys. Rev. A (1)

P. Kharel, R. O. Behunin, W. H. Renninger, and P. T. Rakich, “Noise and dynamics in forward Brillouin interactions,” Phys. Rev. A, vol. 93, 2016, Art. no. .

Phys. Rev. Lett. (1)

Y. Okawachiet al., “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett., vol. 94, 2005, Art. no. .

Phys. Rev. X (1)

P. T. Rakich, C. Reinke, R. Camacho, P. Davids, and Z. Wang, “Giant enhancement of stimulated Brillouin scattering in the subwavelength limit,” Phys. Rev. X, vol. 2, 2012, Art. no. .

Science (1)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science, vol. 318, no. 5857, pp. 1748–1750, 2007.

Other (3)

N. T. Otterstrom, R. O. Behunin, E. A. Kittlaus, Z. Wang, and P. T. Rakich, “A silicon Brillouin laser,” arXiv:1705.05813, 2017.

V. Urick, K. Williams, and J. McKinney, Fundamentals of Microwave Photonics (Wiley Series in Microwave and Optical Engineering).   Hoboken, NJ, USA: Wiley, 2015.

T. Baehr-Joneset al., “A 25 Gb/s silicon photonics platform,” arXiv:1705.05813, 2012.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.