Abstract

This paper aims to address the perception that visible light communication (VLC) systems cannot work under the presence of sunlight. A complete framework is presented to evaluate the performance of VLC systems in the presence of solar irradiance at any given location and time. The effect of solar irradiance is investigated in terms of degradations in signal to noise ratio, data rate, and bit error rate. Direct current (DC) optical orthogonal frequency division multiplexing is used with adaptive bit and energy loading to mitigate DC wander interference and low-frequency ambient light noise. It was found that reliable communication can be achieved under the effect of solar irradiance at high-speed data rates. An optical bandpass blue filter is shown to compensate for half of the reduced data rate in the presence of sunlight. This work demonstrates data rates above 1 Gb/s of a VLC link under strong solar illuminance measured at 50350 lux in clear weather conditions.

© 2018 CCBY

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Cisco Visual Networking Index, “Global mobile data traffic forecast update, 2015-2020,” CISCO, White Paper, 2016. [Online]. Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visu al-networking-index-vni/mobile-white-paper-c11-520862.pdf
  2. OFCOM report, “Award of the 2.3 and 3.4 GHz Spectrum Bands: Competition issues and auction regulations,” OFCOM, Consultation, 2017. [Online]. Available: https://www.ofcom.org.uk/__data/assets/pdf_file/0026/93545/award-of-the-spectrum-bands-consultation.pdf
  3. S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi. Cambridge, U.K.: Cambridge Univ. Press, 2015.
  4. M. S. Islimet al., “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photon. Res., vol. 5, no. 2, pp. A35–A43, 2017. [Online]. Available: http://www.osapublishing.org/prj/abstract.cfm?URI=prj-5-2-A35
  5. D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Express, vol. 23, no. 2, pp. 1627–1637, 2015. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-23-2-1627
  6. G. Povey, “Top 10 Li-Fi myths,” 2012. [Online]. Available: http://visiblelightcomm.com/top-10-li-fi-myths/
  7. M. S. Islim and H. Haas, “Modulation techniques for Li-Fi,” ZTE Commun., vol. 14, no. 2, pp. 29–40, 2016.
  8. Y. H. Chung and S. B. Oh, “Efficient optical filtering for outdoor visible light communications in the presence of sunlight or articifical light,” in Proc. Int. Symp. Intell. Signal Process. Commun. Syst., 2013, pp. 749–752.
  9. T. Hamza, M.-A. Khalighi, S. Bourennane, P. Léon, and J. Opderbecke, “Investigation of solar noise impact on the performance of underwater wireless optical communication links,” Opt. Express, vol. 24, no. 22, pp. 25 832–25 845, 2016. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-24-22-25832
  10. M. Beshr, C. Michie, and I. Andonovic, “Evaluation of visible light communication system performance in the presence of sunlight irradiance,” in Proc. 2015 17th Int. Conf. Transp. Opt. Netw., 2015, pp. 1–4.
  11. Y.-H. Kim and Y.-H. Chung, “Experimental outdoor visible light data communication system using differential decision threshold with optical and color filters,” Opt. Eng., vol. 54, pp. 1–3, 2015. [Online]. Available: http://dx.doi.org/10.1117/1.OE.54.4.040501
  12. D. R. Kim, S. H. Yang, H. S. Kim, Y. H. Son, and S. K. Han, “Outdoor visible light communication for inter-vehicle communication using controller area network,” in Proc. 2012 4th Int. Conf. Commun. Electron., 2012, pp. 31–34.
  13. ASTM, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Tilted Surface, Standard ASTM-G173-03, 2014. [Online]. Available: https://doi.org/10.1520/G0173-03R12
  14. M. Islim and H. Haas, “An investigation of the sunlight irradiance effect on visible light communications,” in Proc. 27th Int. Symp. Pers. Indoor Mobile Radio Commun., Montreal, QC, Canada, 8–13, 2017, pp. 1–6.
  15. G. Cossuet al., “Experimental demonstration of high speed underwater visible light communications,” in Proc. 2013 2nd Int. Workshop Opt. Wireless Commun., 2013, pp. 11–15.
  16. ASTM, Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables, Standard ASTM-E490-00a, 2014. [Online]. Available: https://doi.org/10.1520/E0490
  17. W. B. Stine and M. Geyer, Power From the Sun, 2001. [Online]. Available: http://Powerfromthesun.net
  18. A. Smets, K. Jäger, O. Isabella, M. Zeman, and R. van Swaaij, Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems. Cambridge, U.K.: UIT Cambridge, 2016. [Online]. Available: https://books.google.co.uk/books?id=vTkdjgEACAAJ
  19. I. Reda and A. Andreas, “Solar position algorithm for solar radiation applications,” Sol. Energy, vol. 76, no. 5, pp. 577–589, 2004.
  20. C. A. Gueymard, “Parameterized transmittance model for direct beam and circumsolar spectral irradiance,” Sol. Energy, vol. 71, no. 5, pp. 325–346, 2001.
  21. C. Gueymard, SMARTS2: A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment. Cocoa, FL, USA: Florida Solar Energy Center, 1995.
  22. S. Rajbhandariet al., “A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications,” Semicond. Sci. Technol., vol. 32, no. 2, 2017, Art. no. . [Online]. Available: http://stacks.iop.org/0268-1242/32/i=2/a=023001
  23. F. Xu, M. A. Khalighi, and S. Bourennane, “Impact of different noise sources on the performance of PIN- and APD-based FSO receivers,” in Proc. 11th Int. Conf. Telecommun., 2011, pp. 211–218.
  24. R. Rondanelli, A. Molina, and M. Falvey, “The Atacama surface solar maximum,” Bull. Amer. Meteorol. Soc., vol. 96, no. 3, pp. 405–418, 2015. [Online]. Available: https://doi.org/10.1175/BAMS-D-13-00175.1
  25. S. Dimitrov, S. Sinanovic, and H. Haas, “Signal shaping and modulation for optical wireless communication,” J. Lightw. Technol., vol. 30, no. 9, pp. 1319–1328, 2012.
  26. F. M. Davidson and X. Sun, “Gaussian approximation versus nearly exact performance analysis of optical communication systems with PPM signaling and APD receivers,” IEEE Trans. Commun., vol. 36, no. 11, pp. 1185–1192, 1988.
  27. Hamamatsu Photonics K.K, “Characteristics and Use of SI-APD (avalanche photodiode),” 2004. [Online]. Available: http://neutron.physics.ucsb.edu/docs/Characteristics_and_use_of_SI_APD. pdf
  28. G. Keiser, Optical Communications Essentials. New York, NY, USA: McGraw-Hill, 2003.
  29. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, 1997.
  30. H. E. Levin, “A complete and optimal data allocation method for practical discrete multitone systems,” in Proc. IEEE Global Telecommun. Conf., San Antonio, TX, USA, Nov. 25–29, 2001, vol. 1, pp. 369–374.
  31. C. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, pp. 379–423 & 623–656, 1948.
  32. S. Dimitrov and H. Haas, “Information rate of OFDM-based optical wireless communication systems with nonlinear distortion,” IEEE J. Lightw. Technol., vol. 31, no. 6, pp. 918–929, 2013.
  33. F. Xiong, Digital Modulation Techniques, 2nd ed.Norwood, MA, USA: Artech House, 2006.
  34. C. M. Lampert, “Heat mirror coatings for energy conserving windows,” Sol. Energy Mater., vol. 6, no. 1, pp. 1–41, 1981. [Online]. Available: http://www.sciencedirect.com/science/article/pii/0165163381900472
  35. E. Diaz and M. Knobl, “Prototyping illumination systems with stock optical components,” Photonik Int., Fellbach, Germany, 2012.

2017 (2)

S. Rajbhandariet al., “A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications,” Semicond. Sci. Technol., vol. 32, no. 2, 2017, Art. no. . [Online]. Available: http://stacks.iop.org/0268-1242/32/i=2/a=023001

M. S. Islimet al., “Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED,” Photon. Res., vol. 5, no. 2, pp. A35–A43, 2017. [Online]. Available: http://www.osapublishing.org/prj/abstract.cfm?URI=prj-5-2-A35

2016 (2)

M. S. Islim and H. Haas, “Modulation techniques for Li-Fi,” ZTE Commun., vol. 14, no. 2, pp. 29–40, 2016.

T. Hamza, M.-A. Khalighi, S. Bourennane, P. Léon, and J. Opderbecke, “Investigation of solar noise impact on the performance of underwater wireless optical communication links,” Opt. Express, vol. 24, no. 22, pp. 25 832–25 845, 2016. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-24-22-25832

2015 (3)

Y.-H. Kim and Y.-H. Chung, “Experimental outdoor visible light data communication system using differential decision threshold with optical and color filters,” Opt. Eng., vol. 54, pp. 1–3, 2015. [Online]. Available: http://dx.doi.org/10.1117/1.OE.54.4.040501

R. Rondanelli, A. Molina, and M. Falvey, “The Atacama surface solar maximum,” Bull. Amer. Meteorol. Soc., vol. 96, no. 3, pp. 405–418, 2015. [Online]. Available: https://doi.org/10.1175/BAMS-D-13-00175.1

D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Express, vol. 23, no. 2, pp. 1627–1637, 2015. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-23-2-1627

2013 (1)

S. Dimitrov and H. Haas, “Information rate of OFDM-based optical wireless communication systems with nonlinear distortion,” IEEE J. Lightw. Technol., vol. 31, no. 6, pp. 918–929, 2013.

2012 (2)

E. Diaz and M. Knobl, “Prototyping illumination systems with stock optical components,” Photonik Int., Fellbach, Germany, 2012.

S. Dimitrov, S. Sinanovic, and H. Haas, “Signal shaping and modulation for optical wireless communication,” J. Lightw. Technol., vol. 30, no. 9, pp. 1319–1328, 2012.

2004 (1)

I. Reda and A. Andreas, “Solar position algorithm for solar radiation applications,” Sol. Energy, vol. 76, no. 5, pp. 577–589, 2004.

2001 (1)

C. A. Gueymard, “Parameterized transmittance model for direct beam and circumsolar spectral irradiance,” Sol. Energy, vol. 71, no. 5, pp. 325–346, 2001.

1988 (1)

F. M. Davidson and X. Sun, “Gaussian approximation versus nearly exact performance analysis of optical communication systems with PPM signaling and APD receivers,” IEEE Trans. Commun., vol. 36, no. 11, pp. 1185–1192, 1988.

1981 (1)

C. M. Lampert, “Heat mirror coatings for energy conserving windows,” Sol. Energy Mater., vol. 6, no. 1, pp. 1–41, 1981. [Online]. Available: http://www.sciencedirect.com/science/article/pii/0165163381900472

1948 (1)

C. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, pp. 379–423 & 623–656, 1948.

Andonovic, I.

M. Beshr, C. Michie, and I. Andonovic, “Evaluation of visible light communication system performance in the presence of sunlight irradiance,” in Proc. 2015 17th Int. Conf. Transp. Opt. Netw., 2015, pp. 1–4.

Andreas, A.

I. Reda and A. Andreas, “Solar position algorithm for solar radiation applications,” Sol. Energy, vol. 76, no. 5, pp. 577–589, 2004.

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, 1997.

Beshr, M.

M. Beshr, C. Michie, and I. Andonovic, “Evaluation of visible light communication system performance in the presence of sunlight irradiance,” in Proc. 2015 17th Int. Conf. Transp. Opt. Netw., 2015, pp. 1–4.

Bourennane, S.

T. Hamza, M.-A. Khalighi, S. Bourennane, P. Léon, and J. Opderbecke, “Investigation of solar noise impact on the performance of underwater wireless optical communication links,” Opt. Express, vol. 24, no. 22, pp. 25 832–25 845, 2016. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-24-22-25832

F. Xu, M. A. Khalighi, and S. Bourennane, “Impact of different noise sources on the performance of PIN- and APD-based FSO receivers,” in Proc. 11th Int. Conf. Telecommun., 2011, pp. 211–218.

Chung, Y. H.

Y. H. Chung and S. B. Oh, “Efficient optical filtering for outdoor visible light communications in the presence of sunlight or articifical light,” in Proc. Int. Symp. Intell. Signal Process. Commun. Syst., 2013, pp. 749–752.

Chung, Y.-H.

Y.-H. Kim and Y.-H. Chung, “Experimental outdoor visible light data communication system using differential decision threshold with optical and color filters,” Opt. Eng., vol. 54, pp. 1–3, 2015. [Online]. Available: http://dx.doi.org/10.1117/1.OE.54.4.040501

Cossu, G.

G. Cossuet al., “Experimental demonstration of high speed underwater visible light communications,” in Proc. 2013 2nd Int. Workshop Opt. Wireless Commun., 2013, pp. 11–15.

Davidson, F. M.

F. M. Davidson and X. Sun, “Gaussian approximation versus nearly exact performance analysis of optical communication systems with PPM signaling and APD receivers,” IEEE Trans. Commun., vol. 36, no. 11, pp. 1185–1192, 1988.

Diaz, E.

E. Diaz and M. Knobl, “Prototyping illumination systems with stock optical components,” Photonik Int., Fellbach, Germany, 2012.

Dimitrov, S.

S. Dimitrov and H. Haas, “Information rate of OFDM-based optical wireless communication systems with nonlinear distortion,” IEEE J. Lightw. Technol., vol. 31, no. 6, pp. 918–929, 2013.

S. Dimitrov, S. Sinanovic, and H. Haas, “Signal shaping and modulation for optical wireless communication,” J. Lightw. Technol., vol. 30, no. 9, pp. 1319–1328, 2012.

S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi. Cambridge, U.K.: Cambridge Univ. Press, 2015.

Falvey, M.

R. Rondanelli, A. Molina, and M. Falvey, “The Atacama surface solar maximum,” Bull. Amer. Meteorol. Soc., vol. 96, no. 3, pp. 405–418, 2015. [Online]. Available: https://doi.org/10.1175/BAMS-D-13-00175.1

Geyer, M.

W. B. Stine and M. Geyer, Power From the Sun, 2001. [Online]. Available: http://Powerfromthesun.net

Gueymard, C.

C. Gueymard, SMARTS2: A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment. Cocoa, FL, USA: Florida Solar Energy Center, 1995.

Gueymard, C. A.

C. A. Gueymard, “Parameterized transmittance model for direct beam and circumsolar spectral irradiance,” Sol. Energy, vol. 71, no. 5, pp. 325–346, 2001.

Haas, H.

M. S. Islim and H. Haas, “Modulation techniques for Li-Fi,” ZTE Commun., vol. 14, no. 2, pp. 29–40, 2016.

D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Express, vol. 23, no. 2, pp. 1627–1637, 2015. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-23-2-1627

S. Dimitrov and H. Haas, “Information rate of OFDM-based optical wireless communication systems with nonlinear distortion,” IEEE J. Lightw. Technol., vol. 31, no. 6, pp. 918–929, 2013.

S. Dimitrov, S. Sinanovic, and H. Haas, “Signal shaping and modulation for optical wireless communication,” J. Lightw. Technol., vol. 30, no. 9, pp. 1319–1328, 2012.

S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi. Cambridge, U.K.: Cambridge Univ. Press, 2015.

M. Islim and H. Haas, “An investigation of the sunlight irradiance effect on visible light communications,” in Proc. 27th Int. Symp. Pers. Indoor Mobile Radio Commun., Montreal, QC, Canada, 8–13, 2017, pp. 1–6.

Hamza, T.

T. Hamza, M.-A. Khalighi, S. Bourennane, P. Léon, and J. Opderbecke, “Investigation of solar noise impact on the performance of underwater wireless optical communication links,” Opt. Express, vol. 24, no. 22, pp. 25 832–25 845, 2016. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-24-22-25832

Han, S. K.

D. R. Kim, S. H. Yang, H. S. Kim, Y. H. Son, and S. K. Han, “Outdoor visible light communication for inter-vehicle communication using controller area network,” in Proc. 2012 4th Int. Conf. Commun. Electron., 2012, pp. 31–34.

Isabella, O.

A. Smets, K. Jäger, O. Isabella, M. Zeman, and R. van Swaaij, Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems. Cambridge, U.K.: UIT Cambridge, 2016. [Online]. Available: https://books.google.co.uk/books?id=vTkdjgEACAAJ

Islim, M.

M. Islim and H. Haas, “An investigation of the sunlight irradiance effect on visible light communications,” in Proc. 27th Int. Symp. Pers. Indoor Mobile Radio Commun., Montreal, QC, Canada, 8–13, 2017, pp. 1–6.

Islim, M. S.

Jäger, K.

A. Smets, K. Jäger, O. Isabella, M. Zeman, and R. van Swaaij, Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems. Cambridge, U.K.: UIT Cambridge, 2016. [Online]. Available: https://books.google.co.uk/books?id=vTkdjgEACAAJ

Kahn, J. M.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, 1997.

Keiser, G.

G. Keiser, Optical Communications Essentials. New York, NY, USA: McGraw-Hill, 2003.

Khalighi, M. A.

F. Xu, M. A. Khalighi, and S. Bourennane, “Impact of different noise sources on the performance of PIN- and APD-based FSO receivers,” in Proc. 11th Int. Conf. Telecommun., 2011, pp. 211–218.

Khalighi, M.-A.

T. Hamza, M.-A. Khalighi, S. Bourennane, P. Léon, and J. Opderbecke, “Investigation of solar noise impact on the performance of underwater wireless optical communication links,” Opt. Express, vol. 24, no. 22, pp. 25 832–25 845, 2016. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-24-22-25832

Kim, D. R.

D. R. Kim, S. H. Yang, H. S. Kim, Y. H. Son, and S. K. Han, “Outdoor visible light communication for inter-vehicle communication using controller area network,” in Proc. 2012 4th Int. Conf. Commun. Electron., 2012, pp. 31–34.

Kim, H. S.

D. R. Kim, S. H. Yang, H. S. Kim, Y. H. Son, and S. K. Han, “Outdoor visible light communication for inter-vehicle communication using controller area network,” in Proc. 2012 4th Int. Conf. Commun. Electron., 2012, pp. 31–34.

Kim, Y.-H.

Y.-H. Kim and Y.-H. Chung, “Experimental outdoor visible light data communication system using differential decision threshold with optical and color filters,” Opt. Eng., vol. 54, pp. 1–3, 2015. [Online]. Available: http://dx.doi.org/10.1117/1.OE.54.4.040501

Knobl, M.

E. Diaz and M. Knobl, “Prototyping illumination systems with stock optical components,” Photonik Int., Fellbach, Germany, 2012.

Lampert, C. M.

C. M. Lampert, “Heat mirror coatings for energy conserving windows,” Sol. Energy Mater., vol. 6, no. 1, pp. 1–41, 1981. [Online]. Available: http://www.sciencedirect.com/science/article/pii/0165163381900472

Léon, P.

T. Hamza, M.-A. Khalighi, S. Bourennane, P. Léon, and J. Opderbecke, “Investigation of solar noise impact on the performance of underwater wireless optical communication links,” Opt. Express, vol. 24, no. 22, pp. 25 832–25 845, 2016. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-24-22-25832

Levin, H. E.

H. E. Levin, “A complete and optimal data allocation method for practical discrete multitone systems,” in Proc. IEEE Global Telecommun. Conf., San Antonio, TX, USA, Nov. 25–29, 2001, vol. 1, pp. 369–374.

Michie, C.

M. Beshr, C. Michie, and I. Andonovic, “Evaluation of visible light communication system performance in the presence of sunlight irradiance,” in Proc. 2015 17th Int. Conf. Transp. Opt. Netw., 2015, pp. 1–4.

Molina, A.

R. Rondanelli, A. Molina, and M. Falvey, “The Atacama surface solar maximum,” Bull. Amer. Meteorol. Soc., vol. 96, no. 3, pp. 405–418, 2015. [Online]. Available: https://doi.org/10.1175/BAMS-D-13-00175.1

Oh, S. B.

Y. H. Chung and S. B. Oh, “Efficient optical filtering for outdoor visible light communications in the presence of sunlight or articifical light,” in Proc. Int. Symp. Intell. Signal Process. Commun. Syst., 2013, pp. 749–752.

Opderbecke, J.

T. Hamza, M.-A. Khalighi, S. Bourennane, P. Léon, and J. Opderbecke, “Investigation of solar noise impact on the performance of underwater wireless optical communication links,” Opt. Express, vol. 24, no. 22, pp. 25 832–25 845, 2016. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-24-22-25832

Povey, G.

G. Povey, “Top 10 Li-Fi myths,” 2012. [Online]. Available: http://visiblelightcomm.com/top-10-li-fi-myths/

Rajbhandari, S.

S. Rajbhandariet al., “A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications,” Semicond. Sci. Technol., vol. 32, no. 2, 2017, Art. no. . [Online]. Available: http://stacks.iop.org/0268-1242/32/i=2/a=023001

Reda, I.

I. Reda and A. Andreas, “Solar position algorithm for solar radiation applications,” Sol. Energy, vol. 76, no. 5, pp. 577–589, 2004.

Rondanelli, R.

R. Rondanelli, A. Molina, and M. Falvey, “The Atacama surface solar maximum,” Bull. Amer. Meteorol. Soc., vol. 96, no. 3, pp. 405–418, 2015. [Online]. Available: https://doi.org/10.1175/BAMS-D-13-00175.1

Shannon, C.

C. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, pp. 379–423 & 623–656, 1948.

Sinanovic, S.

S. Dimitrov, S. Sinanovic, and H. Haas, “Signal shaping and modulation for optical wireless communication,” J. Lightw. Technol., vol. 30, no. 9, pp. 1319–1328, 2012.

Smets, A.

A. Smets, K. Jäger, O. Isabella, M. Zeman, and R. van Swaaij, Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems. Cambridge, U.K.: UIT Cambridge, 2016. [Online]. Available: https://books.google.co.uk/books?id=vTkdjgEACAAJ

Son, Y. H.

D. R. Kim, S. H. Yang, H. S. Kim, Y. H. Son, and S. K. Han, “Outdoor visible light communication for inter-vehicle communication using controller area network,” in Proc. 2012 4th Int. Conf. Commun. Electron., 2012, pp. 31–34.

Stine, W. B.

W. B. Stine and M. Geyer, Power From the Sun, 2001. [Online]. Available: http://Powerfromthesun.net

Sun, X.

F. M. Davidson and X. Sun, “Gaussian approximation versus nearly exact performance analysis of optical communication systems with PPM signaling and APD receivers,” IEEE Trans. Commun., vol. 36, no. 11, pp. 1185–1192, 1988.

Tsonev, D.

van Swaaij, R.

A. Smets, K. Jäger, O. Isabella, M. Zeman, and R. van Swaaij, Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems. Cambridge, U.K.: UIT Cambridge, 2016. [Online]. Available: https://books.google.co.uk/books?id=vTkdjgEACAAJ

Videv, S.

Xiong, F.

F. Xiong, Digital Modulation Techniques, 2nd ed.Norwood, MA, USA: Artech House, 2006.

Xu, F.

F. Xu, M. A. Khalighi, and S. Bourennane, “Impact of different noise sources on the performance of PIN- and APD-based FSO receivers,” in Proc. 11th Int. Conf. Telecommun., 2011, pp. 211–218.

Yang, S. H.

D. R. Kim, S. H. Yang, H. S. Kim, Y. H. Son, and S. K. Han, “Outdoor visible light communication for inter-vehicle communication using controller area network,” in Proc. 2012 4th Int. Conf. Commun. Electron., 2012, pp. 31–34.

Zeman, M.

A. Smets, K. Jäger, O. Isabella, M. Zeman, and R. van Swaaij, Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems. Cambridge, U.K.: UIT Cambridge, 2016. [Online]. Available: https://books.google.co.uk/books?id=vTkdjgEACAAJ

Bell Syst. Tech. J. (1)

C. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, pp. 379–423 & 623–656, 1948.

Bull. Amer. Meteorol. Soc. (1)

R. Rondanelli, A. Molina, and M. Falvey, “The Atacama surface solar maximum,” Bull. Amer. Meteorol. Soc., vol. 96, no. 3, pp. 405–418, 2015. [Online]. Available: https://doi.org/10.1175/BAMS-D-13-00175.1

IEEE J. Lightw. Technol. (1)

S. Dimitrov and H. Haas, “Information rate of OFDM-based optical wireless communication systems with nonlinear distortion,” IEEE J. Lightw. Technol., vol. 31, no. 6, pp. 918–929, 2013.

IEEE Trans. Commun. (1)

F. M. Davidson and X. Sun, “Gaussian approximation versus nearly exact performance analysis of optical communication systems with PPM signaling and APD receivers,” IEEE Trans. Commun., vol. 36, no. 11, pp. 1185–1192, 1988.

J. Lightw. Technol. (1)

S. Dimitrov, S. Sinanovic, and H. Haas, “Signal shaping and modulation for optical wireless communication,” J. Lightw. Technol., vol. 30, no. 9, pp. 1319–1328, 2012.

Opt. Eng. (1)

Y.-H. Kim and Y.-H. Chung, “Experimental outdoor visible light data communication system using differential decision threshold with optical and color filters,” Opt. Eng., vol. 54, pp. 1–3, 2015. [Online]. Available: http://dx.doi.org/10.1117/1.OE.54.4.040501

Opt. Express (2)

T. Hamza, M.-A. Khalighi, S. Bourennane, P. Léon, and J. Opderbecke, “Investigation of solar noise impact on the performance of underwater wireless optical communication links,” Opt. Express, vol. 24, no. 22, pp. 25 832–25 845, 2016. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-24-22-25832

D. Tsonev, S. Videv, and H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Opt. Express, vol. 23, no. 2, pp. 1627–1637, 2015. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-23-2-1627

Photon. Res. (1)

Photonik Int., Fellbach, Germany (1)

E. Diaz and M. Knobl, “Prototyping illumination systems with stock optical components,” Photonik Int., Fellbach, Germany, 2012.

Semicond. Sci. Technol. (1)

S. Rajbhandariet al., “A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications,” Semicond. Sci. Technol., vol. 32, no. 2, 2017, Art. no. . [Online]. Available: http://stacks.iop.org/0268-1242/32/i=2/a=023001

Sol. Energy (2)

I. Reda and A. Andreas, “Solar position algorithm for solar radiation applications,” Sol. Energy, vol. 76, no. 5, pp. 577–589, 2004.

C. A. Gueymard, “Parameterized transmittance model for direct beam and circumsolar spectral irradiance,” Sol. Energy, vol. 71, no. 5, pp. 325–346, 2001.

Sol. Energy Mater. (1)

C. M. Lampert, “Heat mirror coatings for energy conserving windows,” Sol. Energy Mater., vol. 6, no. 1, pp. 1–41, 1981. [Online]. Available: http://www.sciencedirect.com/science/article/pii/0165163381900472

ZTE Commun. (1)

M. S. Islim and H. Haas, “Modulation techniques for Li-Fi,” ZTE Commun., vol. 14, no. 2, pp. 29–40, 2016.

Other (20)

Y. H. Chung and S. B. Oh, “Efficient optical filtering for outdoor visible light communications in the presence of sunlight or articifical light,” in Proc. Int. Symp. Intell. Signal Process. Commun. Syst., 2013, pp. 749–752.

M. Beshr, C. Michie, and I. Andonovic, “Evaluation of visible light communication system performance in the presence of sunlight irradiance,” in Proc. 2015 17th Int. Conf. Transp. Opt. Netw., 2015, pp. 1–4.

C. Gueymard, SMARTS2: A Simple Model of the Atmospheric Radiative Transfer of Sunshine: Algorithms and Performance Assessment. Cocoa, FL, USA: Florida Solar Energy Center, 1995.

F. Xu, M. A. Khalighi, and S. Bourennane, “Impact of different noise sources on the performance of PIN- and APD-based FSO receivers,” in Proc. 11th Int. Conf. Telecommun., 2011, pp. 211–218.

D. R. Kim, S. H. Yang, H. S. Kim, Y. H. Son, and S. K. Han, “Outdoor visible light communication for inter-vehicle communication using controller area network,” in Proc. 2012 4th Int. Conf. Commun. Electron., 2012, pp. 31–34.

ASTM, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 Tilted Surface, Standard ASTM-G173-03, 2014. [Online]. Available: https://doi.org/10.1520/G0173-03R12

M. Islim and H. Haas, “An investigation of the sunlight irradiance effect on visible light communications,” in Proc. 27th Int. Symp. Pers. Indoor Mobile Radio Commun., Montreal, QC, Canada, 8–13, 2017, pp. 1–6.

G. Cossuet al., “Experimental demonstration of high speed underwater visible light communications,” in Proc. 2013 2nd Int. Workshop Opt. Wireless Commun., 2013, pp. 11–15.

ASTM, Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables, Standard ASTM-E490-00a, 2014. [Online]. Available: https://doi.org/10.1520/E0490

W. B. Stine and M. Geyer, Power From the Sun, 2001. [Online]. Available: http://Powerfromthesun.net

A. Smets, K. Jäger, O. Isabella, M. Zeman, and R. van Swaaij, Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems. Cambridge, U.K.: UIT Cambridge, 2016. [Online]. Available: https://books.google.co.uk/books?id=vTkdjgEACAAJ

G. Povey, “Top 10 Li-Fi myths,” 2012. [Online]. Available: http://visiblelightcomm.com/top-10-li-fi-myths/

Cisco Visual Networking Index, “Global mobile data traffic forecast update, 2015-2020,” CISCO, White Paper, 2016. [Online]. Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visu al-networking-index-vni/mobile-white-paper-c11-520862.pdf

OFCOM report, “Award of the 2.3 and 3.4 GHz Spectrum Bands: Competition issues and auction regulations,” OFCOM, Consultation, 2017. [Online]. Available: https://www.ofcom.org.uk/__data/assets/pdf_file/0026/93545/award-of-the-spectrum-bands-consultation.pdf

S. Dimitrov and H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi. Cambridge, U.K.: Cambridge Univ. Press, 2015.

F. Xiong, Digital Modulation Techniques, 2nd ed.Norwood, MA, USA: Artech House, 2006.

Hamamatsu Photonics K.K, “Characteristics and Use of SI-APD (avalanche photodiode),” 2004. [Online]. Available: http://neutron.physics.ucsb.edu/docs/Characteristics_and_use_of_SI_APD. pdf

G. Keiser, Optical Communications Essentials. New York, NY, USA: McGraw-Hill, 2003.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE, vol. 85, no. 2, pp. 265–298, 1997.

H. E. Levin, “A complete and optimal data allocation method for practical discrete multitone systems,” in Proc. IEEE Global Telecommun. Conf., San Antonio, TX, USA, Nov. 25–29, 2001, vol. 1, pp. 369–374.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.