Abstract

In general, visible light communication (VLC) systems, which utilise white light-emitting diodes (LEDs), only offer a bandwidth limited to the lower MHz region. Therefore, providing VLC-based high data rate communications systems using VLC becomes a challenging task. To address this challenge, we propose a solution based on multiplexing in both the frequency and space domains. We experimentally demonstrate a 4 ${\boldsymbol{\times }}$ 4 imaging multiple-input multiple-output (MIMO) VLC system (i.e., space multiplexing) utilising multiband carrierless amplitude and phase (m-CAP) modulation (i.e., frequency multiplexing). Independently, both MIMO and m-CAP have separately shown the remarkable ability to improve the transmission speeds in VLC systems, and hence, here we combine them to further improve the net data rate. We investigate the link performance by varying the number of subcarriers m, link distance $\boldsymbol{L}$ , and signal bandwidth $\boldsymbol{B_{\text{sig}}}$ . From all the values tested, we show that a data rate of $\sim$ 249 Mb/s can be maximally achieved for m = 20, $B_{\text{sig}}$ = 20 MHz, and $\boldsymbol{L}$ = 1 m, at a bit error rate of ${3.2\times 10^{-3}}$ using LEDs with $\sim$ 4 MHz bandwidth.

© 2018 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription