Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 35,
  • Issue 4,
  • pp. 711-716
  • (2017)

Type-II GaAs0.5Sb0.5/InP Uni-Traveling Carrier Photodiodes With Sub-Terahertz Bandwidth and High-Power Performance Under Zero-Bias Operation

Not Accessible

Your library or personal account may give you access

Abstract

We successfully demonstrate ultrafast uni-traveling carrier photodiodes (PD) with sub-terahertz bandwidth (∼170 GHz) and high-power performance under zero bias and at 1.55-μm optical wavelength operation. By using a type-II (GaAs0.5Sb0.5/InP) absorption-collector interface and inserting an n-type (1 × 1018 cm−3) charge layer in the collector, the current blocking (Kirk) effect can be greatly minimized. A stack of undoped AlxIn0.52Ga0.48−xAs layers with different Aluminum mole fractions (x: 0.2 to 0.08) and bandgaps is adopted as the collector layer. This graded-bandgap design can provide a built-in electric field and further shorten the internal collector transit time. The demonstrated PD structure achieves a 3-dB optical-to-electrical bandwidth of 170 GHz and subterahertz output power −11.3 dBm at 170 GHz, a record among all the reported zero-bias PDs.

© 2016 IEEE

PDF Article
More Like This
Enhancement in speed and responsivity of uni-traveling carrier photodiodes with GaAs0.5Sb0.5/In0.53Ga0.47As type-II hybrid absorbers

Naseem, Zohauddin Ahmad, Rui-Lin Chao, Hsiang-Szu Chang, C.-J. Ni, H.-S. Chen, Jack Jia-Sheng Huang, Emin Chou, Yu-Heng Jan, and Jin-Wei Shi
Opt. Express 27(11) 15495-15504 (2019)

Design of broadband and high-output power uni-traveling-carrier photodiodes

Rong Zhang, Bouchaib Hraimel, Xue Li, Peng Zhang, and Xiupu Zhang
Opt. Express 21(6) 6943-6954 (2013)

Ultrafast dual-drifting layer uni-traveling carrier photodiode with high saturation current

Jin Li, Bing Xiong, Yi Luo, Changzheng Sun, Jian Wang, Zhibiao Hao, Yanjun Han, Lai Wang, and Hongtao Li
Opt. Express 24(8) 8420-8428 (2016)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.