Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 35,
  • Issue 23,
  • pp. 5069-5078
  • (2017)

Achievable Information Rates for Coded Modulation With Hard Decision Decoding for Coherent Fiber-Optic Systems

Not Accessible

Your library or personal account may give you access

Abstract

We analyze the achievable information rates (AIRs) for coded modulation schemes with quadrature amplitude modulation constellations with both bitwise and symbolwise decoders, corresponding to the case where a binary code is used in combination with a higher order modulation using the bit-interleaved coded modulation (BICM) paradigm and to the case where a nonbinary code over a field matched to the constellation size is used, respectively. In particular, we consider hard decision decoding, which is the preferable option for fiber-optic communication systems where decoding complexity is a concern. Recently, Liga et al. analyzed the AIRs for bitwise and symbolwise decoders considering what the authors called hard decision decoder, which, however, exploits soft information of the transition probabilities of discrete-input discrete-output channel resulting from the hard detection. As such, the complexity of the decoder is essentially the same as the complexity of a soft decision decoder. In this paper, we analyze instead the AIRs for the standard hard decision decoder, commonly used in practice, where the decoding is based on the Hamming distance metric. We show that if standard hard decision decoding is used, bitwise decoders yield significantly higher AIRs than the symbolwise decoders. As a result, contrary to the conclusion by Liga et al., binary decoders together with the BICM paradigm are preferable for spectrally efficient fiber-optic systems. We also design binary and nonbinary staircase codes and show that, in agreement with the AIRs, binary codes yield better performance.

PDF Article
More Like This
Rate-Adaptive Modulation and Low-Density Parity-Check Coding for Optical Fiber Transmission Systems

Gwang-Hyun Gho and Joseph M. Kahn
J. Opt. Commun. Netw. 4(10) 760-768 (2012)

Capacity achieving nonbinary LDPC coded non-uniform shaping modulation for adaptive optical communications

Changyu Lin, Ding Zou, Tao Liu, and Ivan B. Djordjevic
Opt. Express 24(16) 18095-18104 (2016)

Optical Front-End for Soft-Decision LDPC Codes in Optical Communication Systems

M. N. Sakib, V. Mahalingam, W. J. Gross, and O. Liboiron-Ladouceur
J. Opt. Commun. Netw. 3(6) 533-541 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.