Abstract

An effective way of increasing the overall optical fibre capacity is by expanding the bandwidth used to transmit signals. In this paper, the impact of expanding the transmission bandwidth on the optical communication system is experimentally studied using the achievable rates as a performance metric. The tradeoffs between the use of larger bandwidths and higher nonlinear interference (NLI) noise is experimentally and theoretically analyzed. The growth of NLI noise is investigated for spectral bandwidths from 40 GHz up to 7.3 THz using 64-QAM and Nyquist pulse-shaping. Experimental results are shown to be in line with the predictions from the Gaussian-noise model showing a logarithmic growth in NLI noise as the signal bandwidth is extended. A reduction of the information rate of only 10% was found between linear and nonlinear transmission across several transmission bandwidths, increasing up to 7.3 THz. Finally, the power transfer between channels due to stimulated Raman scattering effect is analyzed showing up to 2-dB power tilt at optimum power for the largest transmitted bandwidth of 7.3 THz.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohishi, “Broadband and gain-flattened amplifier composed of a 1.55 um-band and a 1.58 um-band er3+-doped fibre amplifier in a parallel configuration,” Electron. Lett., vol. 33, no. 8, pp. 710–711, 1997.
  2. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100-nm bandwidth raman amplifier,” IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 530–532, 1999.
  3. S. V. Firstovet al., “Bismuth-doped optical fiber amplifier and watt-level CW laser for the spectral region 1600–1800 nm,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2016, Paper no. M3D.6.
  4. Y. Junget al., “Silica-based thulium doped fiber amplifiers for wavelengths beyond the l-band,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2016, Paper no. M3D.5.
  5. J. X. Caiet al., “70.4 tb/s capacity over 7,600 km in c+l band using coded modulation with hybrid constellation shaping and nonlinearity compensation,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, Paper no. Th5B.2.
  6. L. E. Nelson, X. Zhou, B. Zhu, M. F. Yan, P. W. Wisk, and P. D. Magill, “All-raman-amplified, 73 nm seamless band transmission of 9 tb/s over 6000 km of fiber,” IEEE Photon. Technol. Lett., vol. 26, no. 3, pp. 242–245, 2014.
  7. P. Poggiolini, “The GN model of non-linear propagation in uncompensated coherent optical systems,” J. Lightw. Technol., vol. 30, no. 24, pp. 3857–3879, 2012.
  8. R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlinear noise in long, dispersion-uncompensated fiber links,” Opt. Express, vol. 21, no. 22, pp. 25 685–25 699, 2013.
  9. P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” J. Lightw. Technol., vol. 32, no. 4, pp. 694–721, 2014.
  10. A. Nespolaet al. “GN-model validation over seven fiber types in uncompensated PM-16QAM nyquist-WDM links,” IEEE Photon. Technol. Lett., vol. 26, no. 2, pp. 206–209, 2014.
  11. L. Galdinoet al., “Experimental demonstration of modulation-dependent nonlinear interference in optical fibre communication,” in Proc. 42nd Eur. Conf. Opt. Commun., 2016, Paper no. Th.1.A.2.
  12. R. Pastorelliet al., “Investigation of the dependence of non-linear interference on the number of WDM channels in coherent optical networks,” in Proc. 38th Eur. Conf. Exhib. Opt. Commun., 2012, Paper no. We.2.C.2.
  13. J. X. Caiet al., “Transmission performance of coded modulation formats in a wide range of spectral efficiencies,” in Proc. Opt. Fiber Commun., 2014, Paper no. M2C.3.
  14. G. Saavedraet al., “Experimental investigation of nonlinear signal distortions in ultra-wideband transmission systems,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, Paper no. W1G.1.
  15. D. J. Elson, L. Galdino, R. Maher, R. I. Killey, B. C. Thomsen, and P. Bayvel, “High spectral density transmission emulation using amplified spontaneous emission noise,” Opt. Lett., vol. 41, no. 1, pp. 68–71, 2016.
  16. D. J. Elsonet al., “Investigation of bandwidth loading in optical fibre transmission using amplified spontaneous emission noise,” Opt. Express, vol. 25, no. 16, pp. 19 529–19 537, 2017. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-25-16-19529
  17. J. Choet al., “Trans-atlantic field trial using probabilistically shaped 64-QAM at high spectral efficiencies and single-carrier real-time 250-gb/s 16-QAM,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, Paper no. Th5B.3.
  18. M. J. Ready and R. P. Gooch, “Blind equalization based on radius directed adaptation,” in Proc. Int. Conf. Acoust., Speech, Signal Process., 1990, vol. 3, pp. 1699–1702.
  19. D. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication systems,” IEEE Trans. Commun., vol. 28, no. 11, pp. 1867–1875, 1980.
  20. T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightw. Technol., vol. 27, no. 8, pp. 989–999, 2009.
  21. I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett., vol. 20, no. 20, pp. 1733–1735, 2008.
  22. G. Liga, A. Alvarado, E. Agrell, and P. Bayvel, “Information rates of next-generation long-haul optical fiber systems using coded modulation,” J. Lightw. Technol., vol. 35, no. 1, pp. 113–123, 2017.
  23. L. Galdinoet al. “On the limits of digital back-propagation in the presence of transceiver noise,” Opt. Express, vol. 25, no. 4, pp. 4564–4578, 2017.
  24. A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri, “EGN model of non-linear fiber propagation,” Opt. Express, vol. 22, no. 13, pp. 16 335–16 362, 2014.
  25. R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Accumulation of nonlinear interference noise in fiber-optic systems,” Opt. Express, vol. 22, no. 12, pp. 14 199–14 211, 2014.
  26. R. Maher, A. Alvarado, D. Lavery, and P. Bayvel, “Increasing the information rates of optical communications via coded modulation: a study of transceiver performance,” Sci. Rep., vol. 6, no. 1, 2016, Art. no. .
  27. R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28, no. 4, pp. 662–701, 2010.
  28. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, no. 4, pp. 623–656, 1948.
  29. G. P. Agrawal, Nonlinear Fiber Optics.   New York, NY, USA: Academic, 2007.
  30. J. X. Caiet al. “49.3 tb/s transmission over 9100 km using c+l EDFA and 54 tb/s transmission over 9150 km using hybrid-raman EDFA,” J. Lightw. Technol., vol. 33, no. 13, pp. 2724–2734, 2015.
  31. D. Semrau, R. Killey, and P. Bayvel, “Achievable rate degradation of ultra-wideband coherent fiber communication systems due to stimulated raman scattering,” Opt. Express, vol. 25, no. 12, pp. 13 024–13 034, 2017.

2017 (4)

D. J. Elsonet al., “Investigation of bandwidth loading in optical fibre transmission using amplified spontaneous emission noise,” Opt. Express, vol. 25, no. 16, pp. 19 529–19 537, 2017. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-25-16-19529

G. Liga, A. Alvarado, E. Agrell, and P. Bayvel, “Information rates of next-generation long-haul optical fiber systems using coded modulation,” J. Lightw. Technol., vol. 35, no. 1, pp. 113–123, 2017.

D. Semrau, R. Killey, and P. Bayvel, “Achievable rate degradation of ultra-wideband coherent fiber communication systems due to stimulated raman scattering,” Opt. Express, vol. 25, no. 12, pp. 13 024–13 034, 2017.

L. Galdinoet al. “On the limits of digital back-propagation in the presence of transceiver noise,” Opt. Express, vol. 25, no. 4, pp. 4564–4578, 2017.

2016 (2)

D. J. Elson, L. Galdino, R. Maher, R. I. Killey, B. C. Thomsen, and P. Bayvel, “High spectral density transmission emulation using amplified spontaneous emission noise,” Opt. Lett., vol. 41, no. 1, pp. 68–71, 2016.

R. Maher, A. Alvarado, D. Lavery, and P. Bayvel, “Increasing the information rates of optical communications via coded modulation: a study of transceiver performance,” Sci. Rep., vol. 6, no. 1, 2016, Art. no. .

2015 (1)

J. X. Caiet al. “49.3 tb/s transmission over 9100 km using c+l EDFA and 54 tb/s transmission over 9150 km using hybrid-raman EDFA,” J. Lightw. Technol., vol. 33, no. 13, pp. 2724–2734, 2015.

2014 (5)

A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri, “EGN model of non-linear fiber propagation,” Opt. Express, vol. 22, no. 13, pp. 16 335–16 362, 2014.

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Accumulation of nonlinear interference noise in fiber-optic systems,” Opt. Express, vol. 22, no. 12, pp. 14 199–14 211, 2014.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” J. Lightw. Technol., vol. 32, no. 4, pp. 694–721, 2014.

A. Nespolaet al. “GN-model validation over seven fiber types in uncompensated PM-16QAM nyquist-WDM links,” IEEE Photon. Technol. Lett., vol. 26, no. 2, pp. 206–209, 2014.

L. E. Nelson, X. Zhou, B. Zhu, M. F. Yan, P. W. Wisk, and P. D. Magill, “All-raman-amplified, 73 nm seamless band transmission of 9 tb/s over 6000 km of fiber,” IEEE Photon. Technol. Lett., vol. 26, no. 3, pp. 242–245, 2014.

2013 (1)

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlinear noise in long, dispersion-uncompensated fiber links,” Opt. Express, vol. 21, no. 22, pp. 25 685–25 699, 2013.

2012 (1)

P. Poggiolini, “The GN model of non-linear propagation in uncompensated coherent optical systems,” J. Lightw. Technol., vol. 30, no. 24, pp. 3857–3879, 2012.

2010 (1)

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28, no. 4, pp. 662–701, 2010.

2009 (1)

T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightw. Technol., vol. 27, no. 8, pp. 989–999, 2009.

2008 (1)

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett., vol. 20, no. 20, pp. 1733–1735, 2008.

1999 (1)

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100-nm bandwidth raman amplifier,” IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 530–532, 1999.

1997 (1)

M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohishi, “Broadband and gain-flattened amplifier composed of a 1.55 um-band and a 1.58 um-band er3+-doped fibre amplifier in a parallel configuration,” Electron. Lett., vol. 33, no. 8, pp. 710–711, 1997.

1980 (1)

D. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication systems,” IEEE Trans. Commun., vol. 28, no. 11, pp. 1867–1875, 1980.

1948 (1)

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, no. 4, pp. 623–656, 1948.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics.   New York, NY, USA: Academic, 2007.

Agrell, E.

G. Liga, A. Alvarado, E. Agrell, and P. Bayvel, “Information rates of next-generation long-haul optical fiber systems using coded modulation,” J. Lightw. Technol., vol. 35, no. 1, pp. 113–123, 2017.

Alvarado, A.

G. Liga, A. Alvarado, E. Agrell, and P. Bayvel, “Information rates of next-generation long-haul optical fiber systems using coded modulation,” J. Lightw. Technol., vol. 35, no. 1, pp. 113–123, 2017.

R. Maher, A. Alvarado, D. Lavery, and P. Bayvel, “Increasing the information rates of optical communications via coded modulation: a study of transceiver performance,” Sci. Rep., vol. 6, no. 1, 2016, Art. no. .

Bayvel, P.

G. Liga, A. Alvarado, E. Agrell, and P. Bayvel, “Information rates of next-generation long-haul optical fiber systems using coded modulation,” J. Lightw. Technol., vol. 35, no. 1, pp. 113–123, 2017.

D. Semrau, R. Killey, and P. Bayvel, “Achievable rate degradation of ultra-wideband coherent fiber communication systems due to stimulated raman scattering,” Opt. Express, vol. 25, no. 12, pp. 13 024–13 034, 2017.

D. J. Elson, L. Galdino, R. Maher, R. I. Killey, B. C. Thomsen, and P. Bayvel, “High spectral density transmission emulation using amplified spontaneous emission noise,” Opt. Lett., vol. 41, no. 1, pp. 68–71, 2016.

R. Maher, A. Alvarado, D. Lavery, and P. Bayvel, “Increasing the information rates of optical communications via coded modulation: a study of transceiver performance,” Sci. Rep., vol. 6, no. 1, 2016, Art. no. .

Bosco, G.

A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri, “EGN model of non-linear fiber propagation,” Opt. Express, vol. 22, no. 13, pp. 16 335–16 362, 2014.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” J. Lightw. Technol., vol. 32, no. 4, pp. 694–721, 2014.

Cai, J. X.

J. X. Caiet al. “49.3 tb/s transmission over 9100 km using c+l EDFA and 54 tb/s transmission over 9150 km using hybrid-raman EDFA,” J. Lightw. Technol., vol. 33, no. 13, pp. 2724–2734, 2015.

J. X. Caiet al., “Transmission performance of coded modulation formats in a wide range of spectral efficiencies,” in Proc. Opt. Fiber Commun., 2014, Paper no. M2C.3.

J. X. Caiet al., “70.4 tb/s capacity over 7,600 km in c+l band using coded modulation with hybrid constellation shaping and nonlinearity compensation,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, Paper no. Th5B.2.

Carena, A.

A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri, “EGN model of non-linear fiber propagation,” Opt. Express, vol. 22, no. 13, pp. 16 335–16 362, 2014.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” J. Lightw. Technol., vol. 32, no. 4, pp. 694–721, 2014.

Cho, J.

J. Choet al., “Trans-atlantic field trial using probabilistically shaped 64-QAM at high spectral efficiencies and single-carrier real-time 250-gb/s 16-QAM,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, Paper no. Th5B.3.

Curri, V.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” J. Lightw. Technol., vol. 32, no. 4, pp. 694–721, 2014.

A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri, “EGN model of non-linear fiber propagation,” Opt. Express, vol. 22, no. 13, pp. 16 335–16 362, 2014.

Dar, R.

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Accumulation of nonlinear interference noise in fiber-optic systems,” Opt. Express, vol. 22, no. 12, pp. 14 199–14 211, 2014.

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlinear noise in long, dispersion-uncompensated fiber links,” Opt. Express, vol. 21, no. 22, pp. 25 685–25 699, 2013.

Elson, D. J.

D. J. Elsonet al., “Investigation of bandwidth loading in optical fibre transmission using amplified spontaneous emission noise,” Opt. Express, vol. 25, no. 16, pp. 19 529–19 537, 2017. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-25-16-19529

D. J. Elson, L. Galdino, R. Maher, R. I. Killey, B. C. Thomsen, and P. Bayvel, “High spectral density transmission emulation using amplified spontaneous emission noise,” Opt. Lett., vol. 41, no. 1, pp. 68–71, 2016.

Essiambre, R. J.

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28, no. 4, pp. 662–701, 2010.

Fatadin, I.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett., vol. 20, no. 20, pp. 1733–1735, 2008.

Feder, M.

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Accumulation of nonlinear interference noise in fiber-optic systems,” Opt. Express, vol. 22, no. 12, pp. 14 199–14 211, 2014.

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlinear noise in long, dispersion-uncompensated fiber links,” Opt. Express, vol. 21, no. 22, pp. 25 685–25 699, 2013.

Firstov, S. V.

S. V. Firstovet al., “Bismuth-doped optical fiber amplifier and watt-level CW laser for the spectral region 1600–1800 nm,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2016, Paper no. M3D.6.

Forghieri, F.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” J. Lightw. Technol., vol. 32, no. 4, pp. 694–721, 2014.

A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri, “EGN model of non-linear fiber propagation,” Opt. Express, vol. 22, no. 13, pp. 16 335–16 362, 2014.

Foschini, G. J.

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28, no. 4, pp. 662–701, 2010.

Galdino, L.

Godard, D.

D. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication systems,” IEEE Trans. Commun., vol. 28, no. 11, pp. 1867–1875, 1980.

Goebel, B.

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28, no. 4, pp. 662–701, 2010.

Gooch, R. P.

M. J. Ready and R. P. Gooch, “Blind equalization based on radius directed adaptation,” in Proc. Int. Conf. Acoust., Speech, Signal Process., 1990, vol. 3, pp. 1699–1702.

Hoffmann, S.

T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightw. Technol., vol. 27, no. 8, pp. 989–999, 2009.

Ives, D.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett., vol. 20, no. 20, pp. 1733–1735, 2008.

Jiang, Y.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” J. Lightw. Technol., vol. 32, no. 4, pp. 694–721, 2014.

A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri, “EGN model of non-linear fiber propagation,” Opt. Express, vol. 22, no. 13, pp. 16 335–16 362, 2014.

Jung, Y.

Y. Junget al., “Silica-based thulium doped fiber amplifiers for wavelengths beyond the l-band,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2016, Paper no. M3D.5.

Kanamori, T.

M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohishi, “Broadband and gain-flattened amplifier composed of a 1.55 um-band and a 1.58 um-band er3+-doped fibre amplifier in a parallel configuration,” Electron. Lett., vol. 33, no. 8, pp. 710–711, 1997.

Kidorf, H.

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100-nm bandwidth raman amplifier,” IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 530–532, 1999.

Killey, R.

D. Semrau, R. Killey, and P. Bayvel, “Achievable rate degradation of ultra-wideband coherent fiber communication systems due to stimulated raman scattering,” Opt. Express, vol. 25, no. 12, pp. 13 024–13 034, 2017.

Killey, R. I.

Kramer, G.

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28, no. 4, pp. 662–701, 2010.

Lavery, D.

R. Maher, A. Alvarado, D. Lavery, and P. Bayvel, “Increasing the information rates of optical communications via coded modulation: a study of transceiver performance,” Sci. Rep., vol. 6, no. 1, 2016, Art. no. .

Liga, G.

G. Liga, A. Alvarado, E. Agrell, and P. Bayvel, “Information rates of next-generation long-haul optical fiber systems using coded modulation,” J. Lightw. Technol., vol. 35, no. 1, pp. 113–123, 2017.

Ma, M.

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100-nm bandwidth raman amplifier,” IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 530–532, 1999.

Magill, P. D.

L. E. Nelson, X. Zhou, B. Zhu, M. F. Yan, P. W. Wisk, and P. D. Magill, “All-raman-amplified, 73 nm seamless band transmission of 9 tb/s over 6000 km of fiber,” IEEE Photon. Technol. Lett., vol. 26, no. 3, pp. 242–245, 2014.

Maher, R.

D. J. Elson, L. Galdino, R. Maher, R. I. Killey, B. C. Thomsen, and P. Bayvel, “High spectral density transmission emulation using amplified spontaneous emission noise,” Opt. Lett., vol. 41, no. 1, pp. 68–71, 2016.

R. Maher, A. Alvarado, D. Lavery, and P. Bayvel, “Increasing the information rates of optical communications via coded modulation: a study of transceiver performance,” Sci. Rep., vol. 6, no. 1, 2016, Art. no. .

Mecozzi, A.

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Accumulation of nonlinear interference noise in fiber-optic systems,” Opt. Express, vol. 22, no. 12, pp. 14 199–14 211, 2014.

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlinear noise in long, dispersion-uncompensated fiber links,” Opt. Express, vol. 21, no. 22, pp. 25 685–25 699, 2013.

Nelson, L. E.

L. E. Nelson, X. Zhou, B. Zhu, M. F. Yan, P. W. Wisk, and P. D. Magill, “All-raman-amplified, 73 nm seamless band transmission of 9 tb/s over 6000 km of fiber,” IEEE Photon. Technol. Lett., vol. 26, no. 3, pp. 242–245, 2014.

Nespola, A.

A. Nespolaet al. “GN-model validation over seven fiber types in uncompensated PM-16QAM nyquist-WDM links,” IEEE Photon. Technol. Lett., vol. 26, no. 2, pp. 206–209, 2014.

Nissov, M.

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100-nm bandwidth raman amplifier,” IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 530–532, 1999.

Noé, R.

T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightw. Technol., vol. 27, no. 8, pp. 989–999, 2009.

Ohishi, Y.

M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohishi, “Broadband and gain-flattened amplifier composed of a 1.55 um-band and a 1.58 um-band er3+-doped fibre amplifier in a parallel configuration,” Electron. Lett., vol. 33, no. 8, pp. 710–711, 1997.

Ono, H.

M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohishi, “Broadband and gain-flattened amplifier composed of a 1.55 um-band and a 1.58 um-band er3+-doped fibre amplifier in a parallel configuration,” Electron. Lett., vol. 33, no. 8, pp. 710–711, 1997.

Pastorelli, R.

R. Pastorelliet al., “Investigation of the dependence of non-linear interference on the number of WDM channels in coherent optical networks,” in Proc. 38th Eur. Conf. Exhib. Opt. Commun., 2012, Paper no. We.2.C.2.

Pfau, T.

T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightw. Technol., vol. 27, no. 8, pp. 989–999, 2009.

Poggiolini, P.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” J. Lightw. Technol., vol. 32, no. 4, pp. 694–721, 2014.

A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri, “EGN model of non-linear fiber propagation,” Opt. Express, vol. 22, no. 13, pp. 16 335–16 362, 2014.

P. Poggiolini, “The GN model of non-linear propagation in uncompensated coherent optical systems,” J. Lightw. Technol., vol. 30, no. 24, pp. 3857–3879, 2012.

Rabarijaona, E.

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100-nm bandwidth raman amplifier,” IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 530–532, 1999.

Ready, M. J.

M. J. Ready and R. P. Gooch, “Blind equalization based on radius directed adaptation,” in Proc. Int. Conf. Acoust., Speech, Signal Process., 1990, vol. 3, pp. 1699–1702.

Rottwitt, K.

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100-nm bandwidth raman amplifier,” IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 530–532, 1999.

Saavedra, G.

G. Saavedraet al., “Experimental investigation of nonlinear signal distortions in ultra-wideband transmission systems,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, Paper no. W1G.1.

Savory, S. J.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett., vol. 20, no. 20, pp. 1733–1735, 2008.

Semrau, D.

D. Semrau, R. Killey, and P. Bayvel, “Achievable rate degradation of ultra-wideband coherent fiber communication systems due to stimulated raman scattering,” Opt. Express, vol. 25, no. 12, pp. 13 024–13 034, 2017.

Shannon, C. E.

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, no. 4, pp. 623–656, 1948.

Shtaif, M.

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Accumulation of nonlinear interference noise in fiber-optic systems,” Opt. Express, vol. 22, no. 12, pp. 14 199–14 211, 2014.

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlinear noise in long, dispersion-uncompensated fiber links,” Opt. Express, vol. 21, no. 22, pp. 25 685–25 699, 2013.

Sudo, S.

M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohishi, “Broadband and gain-flattened amplifier composed of a 1.55 um-band and a 1.58 um-band er3+-doped fibre amplifier in a parallel configuration,” Electron. Lett., vol. 33, no. 8, pp. 710–711, 1997.

Thomsen, B. C.

Winzer, P. J.

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28, no. 4, pp. 662–701, 2010.

Wisk, P. W.

L. E. Nelson, X. Zhou, B. Zhu, M. F. Yan, P. W. Wisk, and P. D. Magill, “All-raman-amplified, 73 nm seamless band transmission of 9 tb/s over 6000 km of fiber,” IEEE Photon. Technol. Lett., vol. 26, no. 3, pp. 242–245, 2014.

Yamada, M.

M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohishi, “Broadband and gain-flattened amplifier composed of a 1.55 um-band and a 1.58 um-band er3+-doped fibre amplifier in a parallel configuration,” Electron. Lett., vol. 33, no. 8, pp. 710–711, 1997.

Yan, M. F.

L. E. Nelson, X. Zhou, B. Zhu, M. F. Yan, P. W. Wisk, and P. D. Magill, “All-raman-amplified, 73 nm seamless band transmission of 9 tb/s over 6000 km of fiber,” IEEE Photon. Technol. Lett., vol. 26, no. 3, pp. 242–245, 2014.

Zhou, X.

L. E. Nelson, X. Zhou, B. Zhu, M. F. Yan, P. W. Wisk, and P. D. Magill, “All-raman-amplified, 73 nm seamless band transmission of 9 tb/s over 6000 km of fiber,” IEEE Photon. Technol. Lett., vol. 26, no. 3, pp. 242–245, 2014.

Zhu, B.

L. E. Nelson, X. Zhou, B. Zhu, M. F. Yan, P. W. Wisk, and P. D. Magill, “All-raman-amplified, 73 nm seamless band transmission of 9 tb/s over 6000 km of fiber,” IEEE Photon. Technol. Lett., vol. 26, no. 3, pp. 242–245, 2014.

Bell Syst. Tech. J. (1)

C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, no. 4, pp. 623–656, 1948.

Electron. Lett. (1)

M. Yamada, H. Ono, T. Kanamori, S. Sudo, and Y. Ohishi, “Broadband and gain-flattened amplifier composed of a 1.55 um-band and a 1.58 um-band er3+-doped fibre amplifier in a parallel configuration,” Electron. Lett., vol. 33, no. 8, pp. 710–711, 1997.

IEEE Photon. Technol. Lett. (4)

H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100-nm bandwidth raman amplifier,” IEEE Photon. Technol. Lett., vol. 11, no. 5, pp. 530–532, 1999.

A. Nespolaet al. “GN-model validation over seven fiber types in uncompensated PM-16QAM nyquist-WDM links,” IEEE Photon. Technol. Lett., vol. 26, no. 2, pp. 206–209, 2014.

L. E. Nelson, X. Zhou, B. Zhu, M. F. Yan, P. W. Wisk, and P. D. Magill, “All-raman-amplified, 73 nm seamless band transmission of 9 tb/s over 6000 km of fiber,” IEEE Photon. Technol. Lett., vol. 26, no. 3, pp. 242–245, 2014.

I. Fatadin, S. J. Savory, and D. Ives, “Compensation of quadrature imbalance in an optical QPSK coherent receiver,” IEEE Photon. Technol. Lett., vol. 20, no. 20, pp. 1733–1735, 2008.

IEEE Trans. Commun. (1)

D. Godard, “Self-recovering equalization and carrier tracking in two-dimensional data communication systems,” IEEE Trans. Commun., vol. 28, no. 11, pp. 1867–1875, 1980.

J. Lightw. Technol. (6)

T. Pfau, S. Hoffmann, and R. Noé, “Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations,” J. Lightw. Technol., vol. 27, no. 8, pp. 989–999, 2009.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, Y. Jiang, and F. Forghieri, “The GN-model of fiber non-linear propagation and its applications,” J. Lightw. Technol., vol. 32, no. 4, pp. 694–721, 2014.

R. J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightw. Technol., vol. 28, no. 4, pp. 662–701, 2010.

J. X. Caiet al. “49.3 tb/s transmission over 9100 km using c+l EDFA and 54 tb/s transmission over 9150 km using hybrid-raman EDFA,” J. Lightw. Technol., vol. 33, no. 13, pp. 2724–2734, 2015.

G. Liga, A. Alvarado, E. Agrell, and P. Bayvel, “Information rates of next-generation long-haul optical fiber systems using coded modulation,” J. Lightw. Technol., vol. 35, no. 1, pp. 113–123, 2017.

P. Poggiolini, “The GN model of non-linear propagation in uncompensated coherent optical systems,” J. Lightw. Technol., vol. 30, no. 24, pp. 3857–3879, 2012.

Opt. Express (6)

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlinear noise in long, dispersion-uncompensated fiber links,” Opt. Express, vol. 21, no. 22, pp. 25 685–25 699, 2013.

D. J. Elsonet al., “Investigation of bandwidth loading in optical fibre transmission using amplified spontaneous emission noise,” Opt. Express, vol. 25, no. 16, pp. 19 529–19 537, 2017. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?URI=oe-25-16-19529

A. Carena, G. Bosco, V. Curri, Y. Jiang, P. Poggiolini, and F. Forghieri, “EGN model of non-linear fiber propagation,” Opt. Express, vol. 22, no. 13, pp. 16 335–16 362, 2014.

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Accumulation of nonlinear interference noise in fiber-optic systems,” Opt. Express, vol. 22, no. 12, pp. 14 199–14 211, 2014.

D. Semrau, R. Killey, and P. Bayvel, “Achievable rate degradation of ultra-wideband coherent fiber communication systems due to stimulated raman scattering,” Opt. Express, vol. 25, no. 12, pp. 13 024–13 034, 2017.

L. Galdinoet al. “On the limits of digital back-propagation in the presence of transceiver noise,” Opt. Express, vol. 25, no. 4, pp. 4564–4578, 2017.

Opt. Lett. (1)

Sci. Rep. (1)

R. Maher, A. Alvarado, D. Lavery, and P. Bayvel, “Increasing the information rates of optical communications via coded modulation: a study of transceiver performance,” Sci. Rep., vol. 6, no. 1, 2016, Art. no. .

Other (10)

J. Choet al., “Trans-atlantic field trial using probabilistically shaped 64-QAM at high spectral efficiencies and single-carrier real-time 250-gb/s 16-QAM,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, Paper no. Th5B.3.

M. J. Ready and R. P. Gooch, “Blind equalization based on radius directed adaptation,” in Proc. Int. Conf. Acoust., Speech, Signal Process., 1990, vol. 3, pp. 1699–1702.

L. Galdinoet al., “Experimental demonstration of modulation-dependent nonlinear interference in optical fibre communication,” in Proc. 42nd Eur. Conf. Opt. Commun., 2016, Paper no. Th.1.A.2.

R. Pastorelliet al., “Investigation of the dependence of non-linear interference on the number of WDM channels in coherent optical networks,” in Proc. 38th Eur. Conf. Exhib. Opt. Commun., 2012, Paper no. We.2.C.2.

J. X. Caiet al., “Transmission performance of coded modulation formats in a wide range of spectral efficiencies,” in Proc. Opt. Fiber Commun., 2014, Paper no. M2C.3.

G. Saavedraet al., “Experimental investigation of nonlinear signal distortions in ultra-wideband transmission systems,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, Paper no. W1G.1.

S. V. Firstovet al., “Bismuth-doped optical fiber amplifier and watt-level CW laser for the spectral region 1600–1800 nm,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2016, Paper no. M3D.6.

Y. Junget al., “Silica-based thulium doped fiber amplifiers for wavelengths beyond the l-band,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2016, Paper no. M3D.5.

J. X. Caiet al., “70.4 tb/s capacity over 7,600 km in c+l band using coded modulation with hybrid constellation shaping and nonlinearity compensation,” in Proc. Opt. Fiber Commun. Conf. Exhib., 2017, Paper no. Th5B.2.

G. P. Agrawal, Nonlinear Fiber Optics.   New York, NY, USA: Academic, 2007.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.