Abstract

Unlike ultralong coherent optical systems that seriously suffer from fiber nonlinearities, short-reach noncoherent systems such as data center interconnections, which utilize small, cheap, and low-bandwidth components, are sensitive to nonlinearities that are mainly produced by devices responsible for electrical signal amplification, modulation, and demodulation. One of the most promising schemes for these applications is the four-level pulse amplitude modulation format combined with intensity modulation and direct detection; however, it can be significantly degraded by linear and nonlinear intersymbol interference. Linear and nonlinear signal degradation can efficiently be handled by different types of equalizers. In many cases, the straightforward linear equalizer cannot lower the error rate at the acceptable level. Therefore, much stronger equalizers based on nonlinear models such as the Volterra series are proposed. Volterra filter that can also be orthogonalized by the Wiener model is well described in the existing literature, and, in this paper, we investigate the most critical points related to high-speed Volterra filter design and implementation. Several experiments are carried out in order to indicate filter requirements/complexity, acquisition, and stability. We also provide a simple guidance for filter complexity reduction and useful hints for channel acquisition.

© 2017 OAPA

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription