Abstract

This paper presents a method for predicting strain and sensitivity of a fiber-optic flexural disk seismometer (FODS) based on multiturn fiber coils (MTFC) via finite element method (FEM) analysis. FEM can be used to evaluate sensitivity by taking into account the strain distribution in MTFC. A sample MTFC-based FODS was fabricated according to simulation parameters; the experimental results of strain distribution and sensitivity were determined by Brillouin optical time-domain analysis and vibrator, respectively, which in turn can be used to confirm the correctness of the prediction model. The tested strain distribution of MTFC has the same characteristic with its simulation model; the predicted sensitivity of MTFC-based FODS is 6448.0 rad/g. Three sample sensors are fabricated and tested, which have a fabrication error of 7%. All FODS simulations were carried out in the COMSOL Multiphysics environment, which has significant potential for application as a tool of predicting the FODS sensitivity when designing or fabrication an MTFC-based FODS.

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription