Abstract

Recent progress in gas detection with hollow-core microstructured optical fibers (HC-MOFs) and direct absorption/photothermal interferometry spectroscopy are reported. For direct-absorption sensors, the issue of mode interference noise is addressed and techniques to minimize such a noise are experimentally demonstrated. Large-scale drilling of hundreds of low-loss micro-channels along a single HC-MOF is performed, and reduction of diffusion-limited response time from hours to ∼40 s is demonstrated with a 2.3-m-long HC-MOF. For photothermal inteferometry sensors, novel detection configurations based on respectively a Sagnac interferometer and an in-fiber modal interferometer are experimentally demonstrated. The Sagnac configuration avoids the need for complex servo-control for interferometer stabilization while the in-fiber configuration simplifies the detection, reducing the size and cost of the sensor system. Sub ppm gas detection can be achieved easily with photothermal interferometry HC-MOF sensors but is difficult to achieve for direct-absorption sensors with the current commercial HC-MOFs.

© 2016 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription