Abstract

This paper proposes a novel distributed fiber-optic acoustic sensor, which can solve both the tradeoff between the maximum measurable distance and the spatial resolution, and that between the measurement distance and the vibration response bandwidth. The system is based on frequency-division-multiplexing time-gated digital optical frequency domain reflectometry, which consecutively injects linear-frequency-modulated probe pulses with different frequency ranges. Undersampling method is introduced to reduce the sampling rate of the analog-to-digital converter and the data size, which can reduce the cost of the system and facilitate real-time data processing. In experiments, two simultaneous vibrations with frequency up to 9 kHz are detected over the 24.7-km-long fiber, with a sign-to-noise ratio of 30 dB and spatial resolution of 10 m.

© 2017 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription