Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 35,
  • Issue 10,
  • pp. 2037-2043
  • (2017)

Distributed Fiber-Optic Acoustic Sensor With Enhanced Response Bandwidth and High Signal-to-Noise Ratio

Not Accessible

Your library or personal account may give you access

Abstract

This paper proposes a novel distributed fiber-optic acoustic sensor, which can solve both the tradeoff between the maximum measurable distance and the spatial resolution, and that between the measurement distance and the vibration response bandwidth. The system is based on frequency-division-multiplexing time-gated digital optical frequency domain reflectometry, which consecutively injects linear-frequency-modulated probe pulses with different frequency ranges. Undersampling method is introduced to reduce the sampling rate of the analog-to-digital converter and the data size, which can reduce the cost of the system and facilitate real-time data processing. In experiments, two simultaneous vibrations with frequency up to 9 kHz are detected over the 24.7-km-long fiber, with a sign-to-noise ratio of 30 dB and spatial resolution of 10 m.

© 2017 IEEE

PDF Article
More Like This
High-fidelity distributed fiber-optic acoustic sensor with fading noise suppressed and sub-meter spatial resolution

Dian Chen, Qingwen Liu, and Zuyuan He
Opt. Express 26(13) 16138-16146 (2018)

Phase-detection distributed fiber-optic vibration sensor without fading-noise based on time-gated digital OFDR

Dian Chen, Qingwen Liu, and Zuyuan He
Opt. Express 25(7) 8315-8325 (2017)

High-spatial-resolution fiber-optic distributed acoustic sensor based on Φ-OFDR with enhanced crosstalk suppression

He Li, Qingwen Liu, Dian Chen, Yuanpeng Deng, and Zuyuan He
Opt. Lett. 45(2) 563-566 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved