Abstract

Radiation effects at cryogenic temperature are investigated in two radiation-tolerant Fluorine-doped single-mode fibers originating from two different manufacturers. This paper presents measurements at room temperature (297 K) and at cryogenic temperature (16 K) of the radiation induced attenuation at 1312 nm and 1570 nm for both fibers. In addition to the massive increase of the optical attenuation at 16 K, the fiber is found to be in a frozen state where thermal bleaching and defect recombination no longer occurs. However, a long-term recovery, including the heating of the fiber from cryogenic temperature to room temperature, anneals a large amount of the defects created and brings the fiber back to almost its initial performance.

© 2017 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription