Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 34,
  • Issue 9,
  • pp. 2241-2250
  • (2016)

Fiber-Bragg-Grating Based Single Axial Mode Fabry-Perot Interferometer and Its Strain and Acceleration Sensing Applications

Not Accessible

Your library or personal account may give you access

Abstract

Based on a rigorous mode theory and considering the wavelength dispersion of fiber Bragg grating (FBG), the conditions necessary for FBG-based Fabry–Perot interferometer (BFPI) to operate in single axial mode (SM) were investigated, as an extension of phase-shifted FBG, by analytical formulas and numerical simulation. Following the theoretical results, SM-BFPI of very narrow bandpass was designed and fabricated. Using that, the first of its kind to our knowledge, SM-BFPI-based WDM distributed (four-points) strain sensing was demonstrated which had a point-like ultrahigh spatial resolution of 2.1 mm and very high strain precision of <0.8 με. Using a specially designed acceleration pick-up and a path-imbalance Mach–Zehnder interferometer for wavelength interrogation, a fully automatic SM-BFPI accelerometer, capable of giving ultrahigh performance, was developed. The performance of the accelerometer, with a very high sensitivity of 0.5 mGal in 0.1–200 Hz for 0−±980 Gal, is superior to that of electric servo-type accelerometer. To enable the accelerometer to exactly work in the field, the interrogator was stabilized against ambient temperature changes and mechanical disturbances by means of a compensation technique, using the constant wavelength of a reference SM-BFPI. In the course of the experimental study, particular attention has been paid to performance comparison with FBG sensors, much improvement against them having been demonstrated.

© 2016 IEEE

PDF Article
More Like This
Linearly chirped tapered fiber-Bragg-grating-based Fabry–Perot cavity and its application in simultaneous strain and temperature measurement

Konrad Markowski, Kazimierz Jędrzejewski, Michał Marzęcki, and Tomasz Osuch
Opt. Lett. 42(7) 1464-1467 (2017)

Strain and high-temperature discrimination using a Type II fiber Bragg grating and a miniature fiber Fabry–Perot interferometer

Yajun Jiang, Dexing Yang, Yuan Yuan, Jian Xu, Dong Li, and Jianlin Zhao
Appl. Opt. 55(23) 6341-6345 (2016)

Use of a single-multiple-single-mode fiber filter for interrogating fiber Bragg grating strain sensors with dynamic temperature compensation

Qiang Wu, Agus Muhammad Hatta, Yuliya Semenova, and Gerald Farrell
Appl. Opt. 48(29) 5451-5458 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.