Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 34,
  • Issue 8,
  • pp. 1800-1806
  • (2016)

Frequency-Comb Regeneration for Self-Homodyne Superchannels

Open Access Open Access

Abstract

We propose and demonstrate frequency-comb regeneration using injection locking and a parametric mixer. We theoretically evaluate the effect of the dispersive walk-off between the two unmodulated carriers from which the comb is regenerated. We calculate the maximum number of carriers which can be regenerated as a function of the laser linewidth and transmission distance when considering dispersion-unmanaged links. Experimentally, we demonstrate a 70 line comb generation without major linewidth degradation from two carriers with 15 dB optical signal-to-noise ratio (OSNR). The low OSNR operation is achieved by the use of optical injection locking. We also evaluate the degradation in the comb regeneration when the carriers are temporally decorrelated in order to emulate the effect of dispersive walk-off. When the temporal delay is 1.5 ns, the comb regeneration does not suffer from major degradation but when the delay is 10 ns, only 30 carriers can be regenerated without linewidth degradation, which agrees with our theoretical analysis.

© 2016 OAPA

PDF Article
More Like This
Self-homodyne 24×32-QAM superchannel receiver enabled by all-optical comb regeneration using brillouin amplification

Abel Lorences-Riesgo, Mikael Mazur, Tobias A. Eriksson, Peter A. Andrekson, and Magnus Karlsson
Opt. Express 24(26) 29714-29723 (2016)

Carrier regeneration from a blockwise phase-switching signal for a frequency comb-based WDM system

Qiulin Zhang and Chester Shu
Opt. Lett. 43(15) 3694-3697 (2018)

Novel synchronous DPSK optical regenerator based on a feed-forward based carrier extraction scheme

Selwan K. Ibrahim, Stylianos Sygletos, Danish Rafique, John A. O’Dowd, Ruwan Weerasuriya, and Andrew D. Ellis
Opt. Express 19(10) 9445-9452 (2011)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.