Abstract

The 2-μm wavelength range has emerged as a low-loss and low-latency optical transmission window when using hollow-core photonic band gap fiber (HC-PBGF) and high-gain thulium-doped fiber amplifiers (TDFA). Various single and multichannel transmission experiments at these wavelengths have been implemented using directly modulated lasers and LiNbO3-based modulators. Here, we report the transmission performance of an externally modulated 4 × 10 Gb/s NRZ-OOK WDM signal over 1.15 km of low-loss HC-PBGF employing an InP-based Mach–Zehnder modulator (MZM) in the transmitter for the first time. An OSNR of 25 dB on 100-GHz spaced channels is required using a direct detection scheme. Furthermore, we demonstrate the lowest Vπ InP-based MZM operating at 2 μm by increasing the electro-optical overlap in the optical waveguide. The peak–peak modulation voltage is reduced significantly from 4 to 2.7 V with an electro-optic bandwidth of 9 GHz.

© 2015 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription