Abstract

Presented here are the selected optical, physical, and Brillouin-related properties of a novel silica-clad, strontium aluminosilicate (SrAlSi) glass optical fiber produced using the molten core method. The Brillouin gain coefficient was found to be 0.11 × 10−11 m/W, which is about 20 × lower than conventional silica glass optical fibers. The SrAlSi core fiber also has a near-zero temperature coefficient of Brillouin frequency shift (–0.064 MHz/K) and can be considered athermal for all intents and purposes. Additional physical and Brillouin properties of the individual glass components are deduced through the use of an additive model. As a highlight, strontia (SrO) is found to have a large negative Pockels photoelastic coefficient of p12 = – 0.245. Various other bulk properties, such as the acoustic velocity, refractive index, mass density, thermo-optic, and thermo-acoustic, as well as strain-optic and strain-acoustic coefficients are provided.

© 2015 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription