Abstract

High data transmission capacity is increasingly needed in short- and medium-haul optical communication links. Cost-effective wavelength division multiplexed (WDM) transceiver architectures, achieving high information spectral densities (ISDs) ( $>$ 1 b/s/Hz) and using low-complexity direct detection receivers are attractive solutions for such links. In this paper, we assess the use of dual-drive Mach–Zehnder modulators (DD-MZMs), and compare them with in-phase quadrature (IQ)-modulators for generating spectrally-efficient single sideband Nyquist pulse-shaped 16-QAM subcarrier (N-SCM) modulation format signals. The impact of the extinction ratio (ER) of a modulator on the optical sideband suppression ratio (OSSR) was investigated for the SSB signals in WDM systems, together with the resulting impact on inter-channel crosstalk penalties. First, in back-to-back operation, an IQ-modulator with an ER of 30 dB and a DD-MZM with an ER of 18 dB were experimentally compared in a 6 $\times$ 25 Gb/s WDM system by varying the channel spacing. Following this comparison, 16 GHz-spaced 6 $\times$ 25 Gb/s WDM signal transmission was experimentally demonstrated using the DD-MZM. The experiment was performed using a recirculating loop with uncompensated standard single-mode fiber (SSMF) and EDFA-only amplification. The maximum achievable transmission distances for single channel and WDM signals were found to be 565 and 242 km, respectively, at a net optical ISD of 1.5 b/s/Hz. This is the first experimental comparison of such modulator types for SSB N-SCM signal generation and the highest achieved ISD using a DD-MZM in direct-detection WDM transmission.

© 2015 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription