Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 34,
  • Issue 23,
  • pp. 5496-5504
  • (2016)

Improved Lower Bounds for Ranging in Synchronous Visible Light Positioning Systems

Not Accessible

Your library or personal account may give you access

Abstract

In this study, the ZivZakai bound (ZZB) is derived for synchronous visible light positioning (VLP) systems. The proposed ZZB extracts ranging information from the prior information, the time delay parameter, and the channel attenuation factor based on the Lambertian pattern. In addition to the ZZB, the Bayesian CramrRao bound (CRB) and the weighted CRB (WCRB) are calculated for synchronous VLP systems. Furthermore, a closed-form expression is obtained for the expectation of the conditional CRB (ECRB). Numerical examples are presented to compare the bounds against each other and against the maximum a posteriori probability (MAP) estimator. It is observed that the ZZB can provide a reasonable lower limit on the performance of MAP estimators. On the other hand, the WCRB and the ECRB converge to the ZZB in regions of low and high source optical powers, respectively; however, they are not tight in other regions.

© 2016 IEEE

PDF Article
More Like This
Accuracy analysis and improvement of visible light positioning based on VLC system using orthogonal frequency division multiple access

Yitong Xu, Zixiong Wang, Peixi Liu, Jian Chen, Shiying Han, Changyuan Yu, and Jinlong Yu
Opt. Express 25(26) 32618-32630 (2017)

Integrated physical-layer secure visible light communication and positioning system based on polar codes

Junbin Fang, Junxing Pan, Xia Huang, Jiajun Lin, and Canjian Jiang
Opt. Express 31(25) 41756-41772 (2023)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.