Abstract

For short-reach links, direct detection offers the advantages of low cost and low complexity. Discrete multitone (DMT) is a promising format due to its high spectral efficiency, flexibility and tolerance to chromatic dispersion (CD). In this study, we experimentally demonstrate a beyond 100-Gb/s DMT transmission over 80-km single mode fiber (SMF) without CD compensation. Using dual-drive Mach–Zehnder modulator-assisted single-sideband modulation, CD-induced power fading is eliminated after direct detection. Trellis coder modulation (TCM) is used to increase the Euclidean distance of the constellation points and nonlinearity equalization (NLE) is employed to mitigate system nonlinearities. Both TCM and NLE algorithms have contributions to improve the system performance. The experimental results show that high capacities up to 122, 110 and 105 Gb/s are achieved with bit error rate at 4.5 × 10−3 for back to back, 40- and 80-km SMF transmissions, respectively. The required OSNR after 80-km SMF transmission is 34.2 dB. To the best of our knowledge, this study reports the lowest required OSNR and highest capacity for C-band direct-detection transmission over 80-km SMF.

© 2015 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription