Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 34,
  • Issue 2,
  • pp. 508-515
  • (2016)

Photonic Integrated Circuits for Radio-Frequency Signal Generation

Open Access Open Access

Abstract

This paper reviews the current state of the art of photonic-enabled generation of radio-frequency signals with frequencies within the millimeter wave range (30 to 300 GHz) and above using photonic-integrated circuits (RF-PICs). One of the most important applications to date is the generation of carrier wave frequencies for ultrabroadband wireless communications systems, with data rates up to 100 Gb/s. Among the different photonic signal generation techniques that are available, we focus on the approaches for which photonic integrated solutions have been explored. Optical heterodyning is first presented, based on achieving the integration of a dual wavelength sources. The second approach is through onchip integrated mode locked lasers, with excellent performance in terms of frequency stable, low phase-noise narrow linewidth sources. We review the different laser structures that have been reported, to support the advantages of the new structures that we propose.

© 2015 OAPA

PDF Article
More Like This
Millimeter-wave signal generation for a wireless transmission system based on on-chip photonic integrated circuit structures

R. Guzmán, G. Carpintero, C. Gordon, and L. Orbe
Opt. Lett. 41(20) 4843-4846 (2016)

Parallel radio-frequency signal-processing unit based on mode multiplexed photonic integrated circuit

De Zhou, Yu Yu, Yuan Yu, and Xinliang Zhang
Opt. Express 26(16) 20544-20549 (2018)

Optoelectronic cross-injection locking of a dual-wavelength photonic integrated circuit for low-phase-noise millimeter-wave generation

Gaël Kervella, Frederic Van Dijk, Grégoire Pillet, Marco Lamponi, Mourad Chtioui, Loïc Morvan, and Mehdi Alouini
Opt. Lett. 40(15) 3655-3658 (2015)

Cited By

Optica participates in Crossref's Cited-By Linking service. Citing articles from Optica Publishing Group journals and other participating publishers are listed here.


Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.