Abstract

Vertically stacked hydrogenated amorphous silicon (a-Si:H) and aluminum nitride (AlN) photonic circuits are fabricated on bulk silicon using complementary metal-oxide semiconductor back-end-of-line-compatible technology. The 0.5 μm × 0.22 μm a-Si:H and 1 μm × 0.4 μm AlN channel waveguides exhibit relatively low propagation losses of ∼3.8 and ∼1.4 dB/cm at 1550-nm telecom wavelengths, respectively, thus enabling the realization of various high-performance photonic devices on these two layers, such as multimode interference power splitters, waveguide ring resonators, arrayed-waveguide gratings, etc. In particular, the a-Si:H layer is suitable for ultra-compact thermo-optic (TO) devices because of its large refractive index of ∼3.5 and large TO coefficient (TOC) of ∼2.60 × 10−4 K−1, whereas the AlN layer is suitable for large-size temperature-insensitive devices because of its relatively small refractive index of ∼2.0 and small TOC of ∼3.56 × 10−5 K−1. A cascade directional coupler structure is proposed for connection between these two layers, which provides coupling efficiency of ∼ –1.0 dB, as estimated from numerical simulations. The feasibility of stacking different photonic layers on bulk Si paves the way to realize complex 3-D photonic circuits on chip which are not possible in the conventional single-layer configuration.

© 2015 IEEE

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription