Abstract

A long period grating fiber optic sensor coated with hemoglobin is used to detect dissolved oxygen. The sensitivity of this sensor to the ratio of dissolved carbon dioxide to dissolved oxygen is demonstrated via the conversion of carboxyhemoglobin to oxyhemoglobin on the sensor surface. The sensor shows good repeatability with a%CV of less than 1% for carboxyhemoglobin and oxyhemoglobin states with no measurable drift or hysteresis.

© 2016 CCBY

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Stephen, H. M. Slater, A. L. Johnson, and P. D. Skeklj, “The oximeter—A technical aid for the anesthesiologist,” Anesthesiology, vol. 12, no. 5, pp. 541–555, 1951.
  2. J. E. Sinex, “Pulse oximetry: Principles and limitations,” Amer. J. Emergency Med., vol. 17, pp. 59–67, 1999.
  3. R. N. Pittman, Regulation of Tissue Oxygenation. San Rafael, CA, USA: Morgan & Claypool, 2011.
  4. J. A. Gutierrez and A. A. Theodorou, “Oxygen delivery and oxygen consumption in pediatric critical care,” in Pediatric Critical Care Study Guide: Text and Review. London, U.K.: Springer, 2012.
  5. Y. Xiong, J. Xu, J.-W. Wang, and Y.-F. Guan, “A fiber-optic evanescent wave sensor for dissolved oxygen detection based on novel hybrid fluorinated xerogels immobilized with [Ru(bpy)3]2+,” Anal. Bioanal. Chem., vol. 394, no. 3, pp. 919–923, 2009.
  6. M. Partridge, R. Y. N. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Sensors and Actuators B: Chemical,” Sens. Actuators, B. Chem., vol. 203, pp. 621–625, 2014.
  7. S. O. Korposh and S.-W. Lee, “Fabrication of sensitive fibre-optic gas sensors based on nano-assembled thin films,” in Optical Fibre, New Developments, C. Lethien, Ed.Rijeka, Croatia: InTech, 2009.
  8. K. Dalziel and J. R. O’Brien, “The kinetics of deoxygenation of human haemoglobin.,” Biochem. J., vol. 78, pp. 236–245, 1961.
  9. R. Y. N. Wong, E. Chehura, S. E. Staines, S. W. James, and R. P. Tatam, “Fabrication of fiber optic long period gratings operating at the phase matching turning point using an ultraviolet laser,” Appl. Opt., vol. 53, no. 21, pp. 4669–4674, 2014.
  10. A. S. Curtis, J. V. Forrester, and C. McInnes, “Adhesion of cells to polystyrene surfaces,” J. Cell Biol., vol. 97, pp. 1500–1506, 1983.
  11. H. S. Mansur, R. L. Oréfice, and W. L. Vasconcelos, “Biomaterial with chemically engineered surface for protein immobilization,” J. Mater. Sci. Mater. Med., vol. 16, pp. 333–340, 2005.
  12. O. Zhernovaya, O. Sydoruk, V. Tuchin, and A. Douplik, “The refractive index of human hemoglobin in the visible range,” Phys. Med. Biol., vol. 56, no. 13, pp. 4013–4021, 2011.
  13. A. Cents, D. Brilman, and G. F. Versteeg, “CO2 absorption in carbonate/bicarbonate solutions: The Danckwerts-criterion revisited,” Chem. Eng. Sci., vol. 60, pp. 5830–5835, 2005.
  14. C. S. Cheung, S. M. Topliss, S. W. James, and R. P. Tatam, “Response of fiber-optic long-period gratings operating near the phase-matching turning point to the deposition of nanostructured coatings,” J. Opt. Soc. Amer. B, vol. 25, no. 6, pp. 897–902, 2008.
  15. O. Sydoruk, O. Zhernovaya, V. Tuchin, and A. Douplik, “Refractive index of solutions of human hemoglobin from the near-infrared to the ultraviolet range: Kramers-Kronig analysis,” J. Biomed. Opt, vol. 17, no. 11, p. 115002, 2012.
  16. S. W. James, S. O. Korposh, S.-W. Lee, and R. P. Tatam, “A long period grating-based chemical sensor insensitive to the influence of interfering parameters,” Opt. Exp., vol. 22, no. 7, pp. 8012–8023, 2014.
  17. H. Sun and N. Hu, “Voltammetric studies of hemoglobin-coated polystyrene latex bead films on pyrolytic graphite electrodes,” Biophys. Chem., vol. 110, no. 3, pp. 297–308, 2004.
  18. C. M. Bright and D. Ellis, “Intracellular pH changes induced by hypoxia and anoxia in isolated sheep heart Purkinje fibres,” Exp. Physiol., vol. 77, no. 1, pp. 165–175, 1992.

2014 (3)

S. W. James, S. O. Korposh, S.-W. Lee, and R. P. Tatam, “A long period grating-based chemical sensor insensitive to the influence of interfering parameters,” Opt. Exp., vol. 22, no. 7, pp. 8012–8023, 2014.

M. Partridge, R. Y. N. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Sensors and Actuators B: Chemical,” Sens. Actuators, B. Chem., vol. 203, pp. 621–625, 2014.

R. Y. N. Wong, E. Chehura, S. E. Staines, S. W. James, and R. P. Tatam, “Fabrication of fiber optic long period gratings operating at the phase matching turning point using an ultraviolet laser,” Appl. Opt., vol. 53, no. 21, pp. 4669–4674, 2014.

2012 (1)

O. Sydoruk, O. Zhernovaya, V. Tuchin, and A. Douplik, “Refractive index of solutions of human hemoglobin from the near-infrared to the ultraviolet range: Kramers-Kronig analysis,” J. Biomed. Opt, vol. 17, no. 11, p. 115002, 2012.

2011 (1)

O. Zhernovaya, O. Sydoruk, V. Tuchin, and A. Douplik, “The refractive index of human hemoglobin in the visible range,” Phys. Med. Biol., vol. 56, no. 13, pp. 4013–4021, 2011.

2009 (1)

Y. Xiong, J. Xu, J.-W. Wang, and Y.-F. Guan, “A fiber-optic evanescent wave sensor for dissolved oxygen detection based on novel hybrid fluorinated xerogels immobilized with [Ru(bpy)3]2+,” Anal. Bioanal. Chem., vol. 394, no. 3, pp. 919–923, 2009.

2008 (1)

C. S. Cheung, S. M. Topliss, S. W. James, and R. P. Tatam, “Response of fiber-optic long-period gratings operating near the phase-matching turning point to the deposition of nanostructured coatings,” J. Opt. Soc. Amer. B, vol. 25, no. 6, pp. 897–902, 2008.

2005 (2)

A. Cents, D. Brilman, and G. F. Versteeg, “CO2 absorption in carbonate/bicarbonate solutions: The Danckwerts-criterion revisited,” Chem. Eng. Sci., vol. 60, pp. 5830–5835, 2005.

H. S. Mansur, R. L. Oréfice, and W. L. Vasconcelos, “Biomaterial with chemically engineered surface for protein immobilization,” J. Mater. Sci. Mater. Med., vol. 16, pp. 333–340, 2005.

2004 (1)

H. Sun and N. Hu, “Voltammetric studies of hemoglobin-coated polystyrene latex bead films on pyrolytic graphite electrodes,” Biophys. Chem., vol. 110, no. 3, pp. 297–308, 2004.

1999 (1)

J. E. Sinex, “Pulse oximetry: Principles and limitations,” Amer. J. Emergency Med., vol. 17, pp. 59–67, 1999.

1992 (1)

C. M. Bright and D. Ellis, “Intracellular pH changes induced by hypoxia and anoxia in isolated sheep heart Purkinje fibres,” Exp. Physiol., vol. 77, no. 1, pp. 165–175, 1992.

1983 (1)

A. S. Curtis, J. V. Forrester, and C. McInnes, “Adhesion of cells to polystyrene surfaces,” J. Cell Biol., vol. 97, pp. 1500–1506, 1983.

1961 (1)

K. Dalziel and J. R. O’Brien, “The kinetics of deoxygenation of human haemoglobin.,” Biochem. J., vol. 78, pp. 236–245, 1961.

1951 (1)

C. R. Stephen, H. M. Slater, A. L. Johnson, and P. D. Skeklj, “The oximeter—A technical aid for the anesthesiologist,” Anesthesiology, vol. 12, no. 5, pp. 541–555, 1951.

Bright, C. M.

C. M. Bright and D. Ellis, “Intracellular pH changes induced by hypoxia and anoxia in isolated sheep heart Purkinje fibres,” Exp. Physiol., vol. 77, no. 1, pp. 165–175, 1992.

Brilman, D.

A. Cents, D. Brilman, and G. F. Versteeg, “CO2 absorption in carbonate/bicarbonate solutions: The Danckwerts-criterion revisited,” Chem. Eng. Sci., vol. 60, pp. 5830–5835, 2005.

Cents, A.

A. Cents, D. Brilman, and G. F. Versteeg, “CO2 absorption in carbonate/bicarbonate solutions: The Danckwerts-criterion revisited,” Chem. Eng. Sci., vol. 60, pp. 5830–5835, 2005.

Chehura, E.

Cheung, C. S.

C. S. Cheung, S. M. Topliss, S. W. James, and R. P. Tatam, “Response of fiber-optic long-period gratings operating near the phase-matching turning point to the deposition of nanostructured coatings,” J. Opt. Soc. Amer. B, vol. 25, no. 6, pp. 897–902, 2008.

Curtis, A. S.

A. S. Curtis, J. V. Forrester, and C. McInnes, “Adhesion of cells to polystyrene surfaces,” J. Cell Biol., vol. 97, pp. 1500–1506, 1983.

Dalziel, K.

K. Dalziel and J. R. O’Brien, “The kinetics of deoxygenation of human haemoglobin.,” Biochem. J., vol. 78, pp. 236–245, 1961.

Davis, F.

M. Partridge, R. Y. N. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Sensors and Actuators B: Chemical,” Sens. Actuators, B. Chem., vol. 203, pp. 621–625, 2014.

Douplik, A.

O. Sydoruk, O. Zhernovaya, V. Tuchin, and A. Douplik, “Refractive index of solutions of human hemoglobin from the near-infrared to the ultraviolet range: Kramers-Kronig analysis,” J. Biomed. Opt, vol. 17, no. 11, p. 115002, 2012.

O. Zhernovaya, O. Sydoruk, V. Tuchin, and A. Douplik, “The refractive index of human hemoglobin in the visible range,” Phys. Med. Biol., vol. 56, no. 13, pp. 4013–4021, 2011.

Ellis, D.

C. M. Bright and D. Ellis, “Intracellular pH changes induced by hypoxia and anoxia in isolated sheep heart Purkinje fibres,” Exp. Physiol., vol. 77, no. 1, pp. 165–175, 1992.

Forrester, J. V.

A. S. Curtis, J. V. Forrester, and C. McInnes, “Adhesion of cells to polystyrene surfaces,” J. Cell Biol., vol. 97, pp. 1500–1506, 1983.

Guan, Y.-F.

Y. Xiong, J. Xu, J.-W. Wang, and Y.-F. Guan, “A fiber-optic evanescent wave sensor for dissolved oxygen detection based on novel hybrid fluorinated xerogels immobilized with [Ru(bpy)3]2+,” Anal. Bioanal. Chem., vol. 394, no. 3, pp. 919–923, 2009.

Gutierrez, J. A.

J. A. Gutierrez and A. A. Theodorou, “Oxygen delivery and oxygen consumption in pediatric critical care,” in Pediatric Critical Care Study Guide: Text and Review. London, U.K.: Springer, 2012.

Higson, S. P. J.

M. Partridge, R. Y. N. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Sensors and Actuators B: Chemical,” Sens. Actuators, B. Chem., vol. 203, pp. 621–625, 2014.

Hu, N.

H. Sun and N. Hu, “Voltammetric studies of hemoglobin-coated polystyrene latex bead films on pyrolytic graphite electrodes,” Biophys. Chem., vol. 110, no. 3, pp. 297–308, 2004.

James, S. W.

R. Y. N. Wong, E. Chehura, S. E. Staines, S. W. James, and R. P. Tatam, “Fabrication of fiber optic long period gratings operating at the phase matching turning point using an ultraviolet laser,” Appl. Opt., vol. 53, no. 21, pp. 4669–4674, 2014.

S. W. James, S. O. Korposh, S.-W. Lee, and R. P. Tatam, “A long period grating-based chemical sensor insensitive to the influence of interfering parameters,” Opt. Exp., vol. 22, no. 7, pp. 8012–8023, 2014.

M. Partridge, R. Y. N. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Sensors and Actuators B: Chemical,” Sens. Actuators, B. Chem., vol. 203, pp. 621–625, 2014.

C. S. Cheung, S. M. Topliss, S. W. James, and R. P. Tatam, “Response of fiber-optic long-period gratings operating near the phase-matching turning point to the deposition of nanostructured coatings,” J. Opt. Soc. Amer. B, vol. 25, no. 6, pp. 897–902, 2008.

Johnson, A. L.

C. R. Stephen, H. M. Slater, A. L. Johnson, and P. D. Skeklj, “The oximeter—A technical aid for the anesthesiologist,” Anesthesiology, vol. 12, no. 5, pp. 541–555, 1951.

Korposh, S. O.

S. W. James, S. O. Korposh, S.-W. Lee, and R. P. Tatam, “A long period grating-based chemical sensor insensitive to the influence of interfering parameters,” Opt. Exp., vol. 22, no. 7, pp. 8012–8023, 2014.

S. O. Korposh and S.-W. Lee, “Fabrication of sensitive fibre-optic gas sensors based on nano-assembled thin films,” in Optical Fibre, New Developments, C. Lethien, Ed.Rijeka, Croatia: InTech, 2009.

Lee, S.-W.

S. W. James, S. O. Korposh, S.-W. Lee, and R. P. Tatam, “A long period grating-based chemical sensor insensitive to the influence of interfering parameters,” Opt. Exp., vol. 22, no. 7, pp. 8012–8023, 2014.

S. O. Korposh and S.-W. Lee, “Fabrication of sensitive fibre-optic gas sensors based on nano-assembled thin films,” in Optical Fibre, New Developments, C. Lethien, Ed.Rijeka, Croatia: InTech, 2009.

Mansur, H. S.

H. S. Mansur, R. L. Oréfice, and W. L. Vasconcelos, “Biomaterial with chemically engineered surface for protein immobilization,” J. Mater. Sci. Mater. Med., vol. 16, pp. 333–340, 2005.

McInnes, C.

A. S. Curtis, J. V. Forrester, and C. McInnes, “Adhesion of cells to polystyrene surfaces,” J. Cell Biol., vol. 97, pp. 1500–1506, 1983.

O’Brien, J. R.

K. Dalziel and J. R. O’Brien, “The kinetics of deoxygenation of human haemoglobin.,” Biochem. J., vol. 78, pp. 236–245, 1961.

Oréfice, R. L.

H. S. Mansur, R. L. Oréfice, and W. L. Vasconcelos, “Biomaterial with chemically engineered surface for protein immobilization,” J. Mater. Sci. Mater. Med., vol. 16, pp. 333–340, 2005.

Partridge, M.

M. Partridge, R. Y. N. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Sensors and Actuators B: Chemical,” Sens. Actuators, B. Chem., vol. 203, pp. 621–625, 2014.

Pittman, R. N.

R. N. Pittman, Regulation of Tissue Oxygenation. San Rafael, CA, USA: Morgan & Claypool, 2011.

Sinex, J. E.

J. E. Sinex, “Pulse oximetry: Principles and limitations,” Amer. J. Emergency Med., vol. 17, pp. 59–67, 1999.

Skeklj, P. D.

C. R. Stephen, H. M. Slater, A. L. Johnson, and P. D. Skeklj, “The oximeter—A technical aid for the anesthesiologist,” Anesthesiology, vol. 12, no. 5, pp. 541–555, 1951.

Slater, H. M.

C. R. Stephen, H. M. Slater, A. L. Johnson, and P. D. Skeklj, “The oximeter—A technical aid for the anesthesiologist,” Anesthesiology, vol. 12, no. 5, pp. 541–555, 1951.

Staines, S. E.

Stephen, C. R.

C. R. Stephen, H. M. Slater, A. L. Johnson, and P. D. Skeklj, “The oximeter—A technical aid for the anesthesiologist,” Anesthesiology, vol. 12, no. 5, pp. 541–555, 1951.

Sun, H.

H. Sun and N. Hu, “Voltammetric studies of hemoglobin-coated polystyrene latex bead films on pyrolytic graphite electrodes,” Biophys. Chem., vol. 110, no. 3, pp. 297–308, 2004.

Sydoruk, O.

O. Sydoruk, O. Zhernovaya, V. Tuchin, and A. Douplik, “Refractive index of solutions of human hemoglobin from the near-infrared to the ultraviolet range: Kramers-Kronig analysis,” J. Biomed. Opt, vol. 17, no. 11, p. 115002, 2012.

O. Zhernovaya, O. Sydoruk, V. Tuchin, and A. Douplik, “The refractive index of human hemoglobin in the visible range,” Phys. Med. Biol., vol. 56, no. 13, pp. 4013–4021, 2011.

Tatam, R. P.

M. Partridge, R. Y. N. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Sensors and Actuators B: Chemical,” Sens. Actuators, B. Chem., vol. 203, pp. 621–625, 2014.

S. W. James, S. O. Korposh, S.-W. Lee, and R. P. Tatam, “A long period grating-based chemical sensor insensitive to the influence of interfering parameters,” Opt. Exp., vol. 22, no. 7, pp. 8012–8023, 2014.

R. Y. N. Wong, E. Chehura, S. E. Staines, S. W. James, and R. P. Tatam, “Fabrication of fiber optic long period gratings operating at the phase matching turning point using an ultraviolet laser,” Appl. Opt., vol. 53, no. 21, pp. 4669–4674, 2014.

C. S. Cheung, S. M. Topliss, S. W. James, and R. P. Tatam, “Response of fiber-optic long-period gratings operating near the phase-matching turning point to the deposition of nanostructured coatings,” J. Opt. Soc. Amer. B, vol. 25, no. 6, pp. 897–902, 2008.

Theodorou, A. A.

J. A. Gutierrez and A. A. Theodorou, “Oxygen delivery and oxygen consumption in pediatric critical care,” in Pediatric Critical Care Study Guide: Text and Review. London, U.K.: Springer, 2012.

Topliss, S. M.

C. S. Cheung, S. M. Topliss, S. W. James, and R. P. Tatam, “Response of fiber-optic long-period gratings operating near the phase-matching turning point to the deposition of nanostructured coatings,” J. Opt. Soc. Amer. B, vol. 25, no. 6, pp. 897–902, 2008.

Tuchin, V.

O. Sydoruk, O. Zhernovaya, V. Tuchin, and A. Douplik, “Refractive index of solutions of human hemoglobin from the near-infrared to the ultraviolet range: Kramers-Kronig analysis,” J. Biomed. Opt, vol. 17, no. 11, p. 115002, 2012.

O. Zhernovaya, O. Sydoruk, V. Tuchin, and A. Douplik, “The refractive index of human hemoglobin in the visible range,” Phys. Med. Biol., vol. 56, no. 13, pp. 4013–4021, 2011.

Vasconcelos, W. L.

H. S. Mansur, R. L. Oréfice, and W. L. Vasconcelos, “Biomaterial with chemically engineered surface for protein immobilization,” J. Mater. Sci. Mater. Med., vol. 16, pp. 333–340, 2005.

Versteeg, G. F.

A. Cents, D. Brilman, and G. F. Versteeg, “CO2 absorption in carbonate/bicarbonate solutions: The Danckwerts-criterion revisited,” Chem. Eng. Sci., vol. 60, pp. 5830–5835, 2005.

Wang, J.-W.

Y. Xiong, J. Xu, J.-W. Wang, and Y.-F. Guan, “A fiber-optic evanescent wave sensor for dissolved oxygen detection based on novel hybrid fluorinated xerogels immobilized with [Ru(bpy)3]2+,” Anal. Bioanal. Chem., vol. 394, no. 3, pp. 919–923, 2009.

Wong, R. Y. N.

M. Partridge, R. Y. N. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Sensors and Actuators B: Chemical,” Sens. Actuators, B. Chem., vol. 203, pp. 621–625, 2014.

R. Y. N. Wong, E. Chehura, S. E. Staines, S. W. James, and R. P. Tatam, “Fabrication of fiber optic long period gratings operating at the phase matching turning point using an ultraviolet laser,” Appl. Opt., vol. 53, no. 21, pp. 4669–4674, 2014.

Xiong, Y.

Y. Xiong, J. Xu, J.-W. Wang, and Y.-F. Guan, “A fiber-optic evanescent wave sensor for dissolved oxygen detection based on novel hybrid fluorinated xerogels immobilized with [Ru(bpy)3]2+,” Anal. Bioanal. Chem., vol. 394, no. 3, pp. 919–923, 2009.

Xu, J.

Y. Xiong, J. Xu, J.-W. Wang, and Y.-F. Guan, “A fiber-optic evanescent wave sensor for dissolved oxygen detection based on novel hybrid fluorinated xerogels immobilized with [Ru(bpy)3]2+,” Anal. Bioanal. Chem., vol. 394, no. 3, pp. 919–923, 2009.

Zhernovaya, O.

O. Sydoruk, O. Zhernovaya, V. Tuchin, and A. Douplik, “Refractive index of solutions of human hemoglobin from the near-infrared to the ultraviolet range: Kramers-Kronig analysis,” J. Biomed. Opt, vol. 17, no. 11, p. 115002, 2012.

O. Zhernovaya, O. Sydoruk, V. Tuchin, and A. Douplik, “The refractive index of human hemoglobin in the visible range,” Phys. Med. Biol., vol. 56, no. 13, pp. 4013–4021, 2011.

Amer. J. Emergency Med. (1)

J. E. Sinex, “Pulse oximetry: Principles and limitations,” Amer. J. Emergency Med., vol. 17, pp. 59–67, 1999.

Anal. Bioanal. Chem. (1)

Y. Xiong, J. Xu, J.-W. Wang, and Y.-F. Guan, “A fiber-optic evanescent wave sensor for dissolved oxygen detection based on novel hybrid fluorinated xerogels immobilized with [Ru(bpy)3]2+,” Anal. Bioanal. Chem., vol. 394, no. 3, pp. 919–923, 2009.

Anesthesiology (1)

C. R. Stephen, H. M. Slater, A. L. Johnson, and P. D. Skeklj, “The oximeter—A technical aid for the anesthesiologist,” Anesthesiology, vol. 12, no. 5, pp. 541–555, 1951.

Appl. Opt. (1)

Biochem. J. (1)

K. Dalziel and J. R. O’Brien, “The kinetics of deoxygenation of human haemoglobin.,” Biochem. J., vol. 78, pp. 236–245, 1961.

Biophys. Chem. (1)

H. Sun and N. Hu, “Voltammetric studies of hemoglobin-coated polystyrene latex bead films on pyrolytic graphite electrodes,” Biophys. Chem., vol. 110, no. 3, pp. 297–308, 2004.

Chem. Eng. Sci. (1)

A. Cents, D. Brilman, and G. F. Versteeg, “CO2 absorption in carbonate/bicarbonate solutions: The Danckwerts-criterion revisited,” Chem. Eng. Sci., vol. 60, pp. 5830–5835, 2005.

Exp. Physiol. (1)

C. M. Bright and D. Ellis, “Intracellular pH changes induced by hypoxia and anoxia in isolated sheep heart Purkinje fibres,” Exp. Physiol., vol. 77, no. 1, pp. 165–175, 1992.

J. Biomed. Opt (1)

O. Sydoruk, O. Zhernovaya, V. Tuchin, and A. Douplik, “Refractive index of solutions of human hemoglobin from the near-infrared to the ultraviolet range: Kramers-Kronig analysis,” J. Biomed. Opt, vol. 17, no. 11, p. 115002, 2012.

J. Cell Biol. (1)

A. S. Curtis, J. V. Forrester, and C. McInnes, “Adhesion of cells to polystyrene surfaces,” J. Cell Biol., vol. 97, pp. 1500–1506, 1983.

J. Mater. Sci. Mater. Med. (1)

H. S. Mansur, R. L. Oréfice, and W. L. Vasconcelos, “Biomaterial with chemically engineered surface for protein immobilization,” J. Mater. Sci. Mater. Med., vol. 16, pp. 333–340, 2005.

J. Opt. Soc. Amer. B (1)

C. S. Cheung, S. M. Topliss, S. W. James, and R. P. Tatam, “Response of fiber-optic long-period gratings operating near the phase-matching turning point to the deposition of nanostructured coatings,” J. Opt. Soc. Amer. B, vol. 25, no. 6, pp. 897–902, 2008.

Opt. Exp. (1)

S. W. James, S. O. Korposh, S.-W. Lee, and R. P. Tatam, “A long period grating-based chemical sensor insensitive to the influence of interfering parameters,” Opt. Exp., vol. 22, no. 7, pp. 8012–8023, 2014.

Phys. Med. Biol. (1)

O. Zhernovaya, O. Sydoruk, V. Tuchin, and A. Douplik, “The refractive index of human hemoglobin in the visible range,” Phys. Med. Biol., vol. 56, no. 13, pp. 4013–4021, 2011.

Sens. Actuators, B. Chem. (1)

M. Partridge, R. Y. N. Wong, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Sensors and Actuators B: Chemical,” Sens. Actuators, B. Chem., vol. 203, pp. 621–625, 2014.

Other (3)

S. O. Korposh and S.-W. Lee, “Fabrication of sensitive fibre-optic gas sensors based on nano-assembled thin films,” in Optical Fibre, New Developments, C. Lethien, Ed.Rijeka, Croatia: InTech, 2009.

R. N. Pittman, Regulation of Tissue Oxygenation. San Rafael, CA, USA: Morgan & Claypool, 2011.

J. A. Gutierrez and A. A. Theodorou, “Oxygen delivery and oxygen consumption in pediatric critical care,” in Pediatric Critical Care Study Guide: Text and Review. London, U.K.: Springer, 2012.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.