Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Journal of Lightwave Technology
  • Vol. 34,
  • Issue 13,
  • pp. 3053-3064
  • (2016)

Digital Compensation of Bandwidth Limitations for High-Speed DACs and ADCs

Not Accessible

Your library or personal account may give you access

Abstract

In this paper, we present a novel digital preemphasis algorithm to compensate for the electrical bandwidth limitations at the transceiver also by taking into account the quantization noise introduced by the signal digitalization. The proposed method is based on the minimization of the mean square error between the desired input signals and the output signals of the digital-to-analog converter/analog-to-digital converter (DAC/ADC), when assuming the knowledge of the DAC/ADC frequency responses. Though this paper focuses on the DAC/ADC compensation, the introduced method could be applied to electrical bandwidth limitations caused by any other component within the transponder. The performance of the algorithm is assessed in optical back-to-back configuration by comparing it against the case without digital preemphasis and with a previously published method to compensate for DAC bandwidth limitations. Our analysis shows that when utilizing realistic descriptions of the DAC/ADC, the proposed digital preemphasis (at the transmitter) or digital compensation (at the transmitter and receiver) can considerably increase the maximum transmittable symbol rate for the case of advanced modulation formats. For example, the maximum symbol rate can be ideally increased up to $\sim$ 60% for the case of 16QAM when employing the high-speed DAC with a $-$ 3 dB electrical bandwidth of $\sim$ 16 GHz and with six effective number of bits. Furthermore, we evaluate the impact of additional noise sources, based on experimental measurements, envisioning potential for further improvements of the digital preemphasis module. Finally, we experimentally verified our algorithm, for the specific case of polarization-multiplexed 16QAM, showing a considerable match between simulation and lab results.

© 2016 IEEE

PDF Article
More Like This
Online digital offset mismatch compensation for high-speed time-interleaved ADC in real-time optical OFDM receiver

Ming Chen, Gang Liu, Long Zhang, Hui Zhou, and QingHui Chen
Opt. Express 27(12) 16650-16660 (2019)

4-bit DAC based 6.9Gb/s PAM-8 UOWC system using single-pixel mini-LED and digital pre-compensation

Chen Cheng, Xueyang Li, Qian Xiang, Jun Li, Yongchao Jin, Zixian Wei, H. Y. Fu, and Yanfu Yang
Opt. Express 30(15) 28014-28023 (2022)

Constellation size for probabilistic shaping under the constraint of limited ADC resolution

Qiulin Zhang and Chester Shu
Opt. Lett. 44(23) 5820-5823 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.